Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters

Database
Language
Journal
Affiliation country
Publication year range
1.
Cell ; 183(2): 411-428.e16, 2020 10 15.
Article in English | MEDLINE | ID: mdl-32970988

ABSTRACT

The colon is primarily responsible for absorbing fluids. It contains a large number of microorganisms including fungi, which are enriched in its distal segment. The colonic mucosa must therefore tightly regulate fluid influx to control absorption of fungal metabolites, which can be toxic to epithelial cells and lead to barrier dysfunction. How this is achieved remains unknown. Here, we describe a mechanism by which the innate immune system allows rapid quality check of absorbed fluids to avoid intoxication of colonocytes. This mechanism relies on a population of distal colon macrophages that are equipped with "balloon-like" protrusions (BLPs) inserted in the epithelium, which sample absorbed fluids. In the absence of macrophages or BLPs, epithelial cells keep absorbing fluids containing fungal products, leading to their death and subsequent loss of epithelial barrier integrity. These results reveal an unexpected and essential role of macrophages in the maintenance of colon-microbiota interactions in homeostasis. VIDEO ABSTRACT.


Subject(s)
Gastrointestinal Microbiome/physiology , Intestinal Mucosa/metabolism , Macrophages/metabolism , Animals , Colon/metabolism , Epithelial Cells/metabolism , Epithelium , Female , Homeostasis , Immunity, Innate/immunology , Intestinal Mucosa/microbiology , Macrophages/physiology , Male , Mice , Mice, Inbred C57BL , Microbiota , Signal Transduction
SELECTION OF CITATIONS
SEARCH DETAIL