Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Database
Language
Publication year range
1.
J Pharmacol Exp Ther ; 390(3): 302-317, 2024 Aug 19.
Article in English | MEDLINE | ID: mdl-38641354

ABSTRACT

One cannot survive without regularly urinating and defecating. People with neurologic injury (spinal cord injury, traumatic brain injury, stroke) or disease (multiple sclerosis, Parkinson's disease, spina bifida) and many elderly are unable to voluntarily initiate voiding. The great majority of them require bladder catheters to void urine and "manual bowel programs" with digital rectal stimulation and manual extraction to void stool. Catheter-associated urinary tract infections frequently require hospitalization, whereas manual bowel programs are time consuming (1 to 2 hours) and stigmatizing and cause rectal pain and discomfort. Laxatives and enemas produce defecation, but onset and duration are unpredictable, prolonged, and difficult to control, which can produce involuntary defecation and fecal incontinence. Patients with spinal cord injury (SCI) consider recovery of bladder and bowel function a higher priority than recovery of walking. Bladder and bowel dysfunction are a top reason for institutionalization of elderly. Surveys indicate that convenience, rapid onset and short duration, reliability and predictability, and efficient voiding are priorities of SCI individuals. Despite the severe, unmet medical need, there is no literature regarding on-demand, rapid-onset, short-duration, drug-induced voiding therapies. This article provides in-depth discussion of recent discovery and development of two candidates for on-demand voiding therapies. The first, [Lys3,Gly8,-R-γ-lactam-Leu9]-NKA(3-10) (DTI-117), a neurokinin2 receptor agonist, induces both urination and defecation after systemic administration. The second, capsaicin (DTI-301), is a transient receptor potential cation channel subfamily V member 1 (TRPV1) receptor agonist that induces defecation after intrarectal administration. The review also presents clinical studies of a combination drug therapy administered via iontophoresis and preclinical studies of neuromodulation devices that induce urination and defecation. SIGNIFICANCE STATEMENT: A safe and effective, on-demand, rapid-onset, short-duration, drug-induced, voiding therapy could eliminate or reduce need for bladder catheters, manual bowel programs, and colostomies in patient populations that are unable to voluntarily initiate voiding. People with spinal injury place more importance on restoring bladder and bowel control than restoring their ability to walk. This paradigm-changing therapy would reduce stigmatism and healthcare costs while increasing convenience and quality of life.


Subject(s)
Urination , Humans , Urination/physiology , Urination/drug effects , Spinal Cord Injuries/therapy , Spinal Cord Injuries/physiopathology , Animals , Defecation/physiology , Defecation/drug effects
2.
J Pharmacol Exp Ther ; 390(2): 196-202, 2024 Jul 18.
Article in English | MEDLINE | ID: mdl-38719479

ABSTRACT

Substantial clinical and preclinical evidence indicates that transient receptor potential vanilloid 1 (TRPV1) receptors are expressed on terminals of colorectal chemoreceptors and mechanoreceptors and are involved in various rectal hypersensitivity disorders with common features of colorectal overactivity. These stimulatory properties of TRPV1 receptors on colorectal function suggested that brief stimulation of TRPV1 might provide a means of pharmacologically activating the colorectum to induce defecation in patients with an "unresponsive" colorectum. The current studies explored the basic features of TRPV1 receptor-induced contractions of the colorectum in anesthetized rats with and without acute spinal cord injury (aSCI). Cumulative concentration-response curves to intrarectal (IR) capsaicin (CAP) solutions (0.003%-3.0%) were performed in anesthetized aSCI and spinal intact rats. CAP produced an "inverted U," cumulative concentration-response curve with a threshold for inducing colorectal contractions at 0.01% and a peak response at 0.1% and slight decreases in responses up to 3%. Decreases in responses with concentrations >0.1% are due to a rapid desensitization (i.e., ≤30 minutes) of TRPV1 receptors to each successive dose. Desensitization appeared fully recovered within 24 hours in spinal intact rats. Colorectal contractions were completely blocked by atropine, indicating a reflexogenic activation of parasympathetic neurons, and responses were completely unaffected by a neurokinin 2 receptor antagonist, indicating that release of neurokinin A from afferent terminals and subsequent direct contractions of the smooth muscle was not involved. IR administration of three other TRPV1 receptor agonists produced similar results as CAP. SIGNIFICANCE STATEMENT: Individuals with spinal cord injury often lose control of defecation. Time-consuming bowel programs using digital stimulation of the rectum are used to empty the bowel. This study shows that intrarectal administration of the transient receptor potential vanilloid 1 (TRPV1) receptor agonist, capsaicin, can induce rapid-onset, short-duration colorectal contractions capable of inducing defecation in spinal cord injured and intact rats. Therefore, TRPV1 agonists show promise as potential therapeutics to induce defecation in individuals with neurogenic bowel.


Subject(s)
Capsaicin , Colon , Muscle Contraction , Rats, Sprague-Dawley , TRPV Cation Channels , Animals , Male , Rats , TRPV Cation Channels/agonists , TRPV Cation Channels/metabolism , Capsaicin/pharmacology , Colon/drug effects , Colon/metabolism , Muscle Contraction/drug effects , Spinal Cord Injuries/physiopathology , Spinal Cord Injuries/metabolism , Rectum/drug effects , Rectum/innervation , Dose-Response Relationship, Drug , Anesthesia , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL