Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
1.
Mol Cell ; 84(3): 506-521.e11, 2024 Feb 01.
Article in English | MEDLINE | ID: mdl-38159565

ABSTRACT

Regulated protein phosphorylation controls most cellular processes. The protein phosphatase PP1 is the catalytic subunit of many holoenzymes that dephosphorylate serine/threonine residues. How these enzymes recruit their substrates is largely unknown. Here, we integrated diverse approaches to elucidate how the PP1 non-catalytic subunit PPP1R15B (R15B) captures its full trimeric eIF2 substrate. We found that the substrate-recruitment module of R15B is largely disordered with three short helical elements, H1, H2, and H3. H1 and H2 form a clamp that grasps the substrate in a region remote from the phosphorylated residue. A homozygous N423D variant, adjacent to H1, reducing substrate binding and dephosphorylation was discovered in a rare syndrome with microcephaly, developmental delay, and intellectual disability. These findings explain how R15B captures its 125 kDa substrate by binding the far end of the complex relative to the phosphosite to present it for dephosphorylation by PP1, a paradigm of broad relevance.


Subject(s)
Catalytic Domain , Eukaryotic Initiation Factor-2 , Protein Phosphatase 1 , Humans , Phosphorylation , Protein Phosphatase 1/genetics , Protein Phosphatase 1/metabolism
2.
Nucleic Acids Res ; 52(10): 6049-6065, 2024 Jun 10.
Article in English | MEDLINE | ID: mdl-38709882

ABSTRACT

Severe fever with thrombocytopenia syndrome virus (SFTSV) is a human pathogen that is now endemic to several East Asian countries. The viral large (L) protein catalyzes viral transcription by stealing host mRNA caps via a process known as cap-snatching. Here, we establish an in vitro cap-snatching assay and present three high-quality electron cryo-microscopy (cryo-EM) structures of the SFTSV L protein in biologically relevant, transcription-specific states. In a priming-state structure, we show capped RNA bound to the L protein cap-binding domain (CBD). The L protein conformation in this priming structure is significantly different from published replication-state structures, in particular the N- and C-terminal domains. The capped-RNA is positioned in a way that it can feed directly into the RNA-dependent RNA polymerase (RdRp) ready for elongation. We also captured the L protein in an early-elongation state following primer-incorporation demonstrating that this priming conformation is retained at least in the very early stages of primer extension. This structural data is complemented by in vitro biochemical and cell-based assays. Together, these insights further our mechanistic understanding of how SFTSV and other bunyaviruses incorporate stolen host mRNA fragments into their viral transcripts thereby allowing the virus to hijack host cell translation machinery.


Subject(s)
Host Microbial Interactions , Models, Molecular , Phlebovirus , RNA Caps , Transcription, Genetic , Humans , Cryoelectron Microscopy , Phlebovirus/chemistry , Phlebovirus/genetics , Phlebovirus/ultrastructure , Protein Conformation , RNA Caps/chemistry , RNA Caps/metabolism , RNA Caps/ultrastructure , RNA, Viral/chemistry , RNA, Viral/metabolism , RNA-Dependent RNA Polymerase/metabolism , Viral Proteins/chemistry , Viral Proteins/metabolism , Viral Proteins/ultrastructure , Virus Replication/physiology , Host Microbial Interactions/physiology
3.
PLoS Pathog ; 19(8): e1011533, 2023 08.
Article in English | MEDLINE | ID: mdl-37549153

ABSTRACT

The Bunyavirales order is a large and diverse group of segmented negative-strand RNA viruses. Several virus families within this order contain important human pathogens, including Sin Nombre virus (SNV) of the Hantaviridae. Despite the high epidemic potential of bunyaviruses, specific medical countermeasures such as vaccines or antivirals are missing. The multifunctional ~250 kDa L protein of hantaviruses, amongst other functional domains, harbors the RNA-dependent RNA polymerase (RdRp) and an endonuclease and catalyzes transcription as well as replication of the viral RNA genome, making it a promising therapeutic target. The development of inhibitors targeting these key processes requires a profound understanding of the catalytic mechanisms. Here, we established expression and purification protocols of the full-length SNV L protein bearing the endonuclease mutation K124A. We applied different biochemical in vitro assays to provide an extensive characterization of the different enzymatic functions as well as the capacity of the hantavirus L protein to interact with the viral RNA. By using single-particle cryo-EM, we obtained a 3D model including the L protein core region containing the RdRp, in complex with the 5' promoter RNA. This first high-resolution model of a New World hantavirus L protein shows striking similarity to related bunyavirus L proteins. The interaction of the L protein with the 5' RNA observed in the structural model confirms our hypothesis of protein-RNA binding based on our biochemical data. Taken together, this study provides an excellent basis for future structural and functional studies on the hantavirus L protein and for the development of antiviral compounds.


Subject(s)
Bunyaviridae , Orthohantavirus , RNA Viruses , Sin Nombre virus , Humans , Sin Nombre virus/genetics , Sin Nombre virus/metabolism , Orthohantavirus/genetics , RNA-Dependent RNA Polymerase/genetics , Bunyaviridae/metabolism , RNA, Viral/genetics , RNA Viruses/genetics , Endonucleases/genetics , Endonucleases/metabolism
4.
Nucleic Acids Res ; 51(3): 1424-1442, 2023 02 22.
Article in English | MEDLINE | ID: mdl-36651274

ABSTRACT

Severe fever with thrombocytopenia syndrome virus (SFTSV) is a phenuivirus that has rapidly become endemic in several East Asian countries. The large (L) protein of SFTSV, which includes the RNA-dependent RNA polymerase (RdRp), is responsible for catalysing viral genome replication and transcription. Here, we present 5 cryo-electron microscopy (cryo-EM) structures of the L protein in several states of the genome replication process, from pre-initiation to late-stage elongation, at a resolution of up to 2.6 Å. We identify how the L protein binds the 5' viral RNA in a hook-like conformation and show how the distal 5' and 3' RNA ends form a duplex positioning the 3' RNA terminus in the RdRp active site ready for initiation. We also observe the L protein stalled in the early and late stages of elongation with the RdRp core accommodating a 10-bp product-template duplex. This duplex ultimately splits with the template binding to a designated 3' secondary binding site. The structural data and observations are complemented by in vitro biochemical and cell-based mini-replicon assays. Altogether, our data provide novel key insights into the mechanism of viral genome replication by the SFTSV L protein and will aid drug development against segmented negative-strand RNA viruses.


Subject(s)
Phlebovirus , Severe Fever with Thrombocytopenia Syndrome , Humans , Severe Fever with Thrombocytopenia Syndrome/genetics , Cryoelectron Microscopy , RNA, Viral/genetics , RNA-Dependent RNA Polymerase/metabolism , Phlebovirus/genetics , Virus Replication , Genome, Viral
5.
Nat Struct Mol Biol ; 31(7): 1105-1113, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38316878

ABSTRACT

Due to its asymmetric shape, size and compactness, the structure of the infectious mature virus (MV) of vaccinia virus (VACV), the best-studied poxvirus, remains poorly understood. Instead, subviral particles, in particular membrane-free viral cores, have been studied with cryo-electron microscopy. Here, we compared viral cores obtained by detergent stripping of MVs with cores in the cellular cytoplasm, early in infection. We focused on the prominent palisade layer on the core surface, combining cryo-electron tomography, subtomogram averaging and AlphaFold2 structure prediction. We showed that the palisade is composed of densely packed trimers of the major core protein A10. Trimers display a random order and their classification indicates structural flexibility. A10 on cytoplasmic cores is organized in a similar manner, indicating that the structures obtained in vitro are physiologically relevant. We discuss our results in the context of the VACV replicative cycle, and the assembly and disassembly of the infectious MV.


Subject(s)
Cryoelectron Microscopy , Vaccinia virus , Vaccinia virus/ultrastructure , Humans , Protein Multimerization , Electron Microscope Tomography , Models, Molecular , Virion/ultrastructure , Virion/metabolism
6.
7.
Viruses ; 13(8)2021 08 06.
Article in English | MEDLINE | ID: mdl-34452426

ABSTRACT

Hantaviruses infect a wide range of hosts including insectivores and rodents and can also cause zoonotic infections in humans, which can lead to severe disease with possible fatal outcomes. Hantavirus outbreaks are usually linked to the population dynamics of the host animals and their habitats being in close proximity to humans, which is becoming increasingly important in a globalized world. Currently there is neither an approved vaccine nor a specific and effective antiviral treatment available for use in humans. Hantaviruses belong to the order Bunyavirales with a tri-segmented negative-sense RNA genome. They encode only five viral proteins and replicate and transcribe their genome in the cytoplasm of infected cells. However, many details of the viral amplification cycle are still unknown. In recent years, structural biology methods such as cryo-electron tomography, cryo-electron microscopy, and crystallography have contributed essentially to our understanding of virus entry by membrane fusion as well as genome encapsidation by the nucleoprotein. In this review, we provide an update on the hantavirus replication cycle with a special focus on structural virology aspects.


Subject(s)
Genome, Viral , Orthohantavirus/genetics , Orthohantavirus/physiology , Virus Replication , Animals , Cryoelectron Microscopy , Crystallography, X-Ray , Orthohantavirus/chemistry , Hantavirus Infections/virology , Humans , Rodentia/virology , Viral Proteins/genetics , Virus Assembly , Virus Internalization
8.
Nat Commun ; 12(1): 7018, 2021 12 02.
Article in English | MEDLINE | ID: mdl-34857749

ABSTRACT

Lassa virus is endemic in West Africa and can cause severe hemorrhagic fever. The viral L protein transcribes and replicates the RNA genome via its RNA-dependent RNA polymerase activity. Here, we present nine cryo-EM structures of the L protein in the apo-, promoter-bound pre-initiation and active RNA synthesis states. We characterize distinct binding pockets for the conserved 3' and 5' promoter RNAs and show how full-promoter binding induces a distinct pre-initiation conformation. In the apo- and early elongation states, the endonuclease is inhibited by two distinct L protein peptides, whereas in the pre-initiation state it is uninhibited. In the early elongation state, a template-product duplex is bound in the active site cavity together with an incoming non-hydrolysable nucleotide and the full C-terminal region of the L protein, including the putative cap-binding domain, is well-ordered. These data advance our mechanistic understanding of how this flexible and multifunctional molecular machine is activated.


Subject(s)
Lassa virus/genetics , RNA, Viral/chemistry , RNA-Dependent RNA Polymerase/chemistry , Transcription, Genetic , Viral Proteins/chemistry , Amino Acid Motifs , Catalytic Domain , Cloning, Molecular , Escherichia coli/genetics , Escherichia coli/metabolism , Gene Expression , Genetic Vectors/chemistry , Genetic Vectors/metabolism , Lassa virus/chemistry , Lassa virus/enzymology , Models, Molecular , Promoter Regions, Genetic , Protein Binding , Protein Conformation, alpha-Helical , Protein Conformation, beta-Strand , Protein Interaction Domains and Motifs , RNA, Viral/biosynthesis , RNA, Viral/genetics , RNA-Dependent RNA Polymerase/genetics , RNA-Dependent RNA Polymerase/metabolism , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Substrate Specificity , Viral Proteins/genetics , Viral Proteins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL