Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 853
Filter
Add more filters

Country/Region as subject
Publication year range
1.
PLoS Genet ; 20(2): e1011163, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38377137

ABSTRACT

Neonicotinoid insecticides, which target insect nicotinic acetylcholine receptors (nAChRs), have been widely and intensively used to control the whitefly, Bemisia tabaci, a highly damaging, globally distributed, crop pest. This has inevitably led to the emergence of populations with resistance to neonicotinoids. However, to date, there have been no reports of target-site resistance involving mutation of B. tabaci nAChR genes. Here we characterize the nAChR subunit gene family of B. tabaci and identify dual mutations (A58T&R79E) in one of these genes (BTß1) that confer resistance to multiple neonicotinoids. Transgenic D. melanogaster, where the native nAChR Dß1 was replaced with BTß1A58T&R79E, were significantly more resistant to neonicotinoids than flies where Dß1 were replaced with the wildtype BTß1 sequence, demonstrating the causal role of the mutations in resistance. The two mutations identified in this study replace two amino acids that are highly conserved in >200 insect species. Three-dimensional modelling suggests a molecular mechanism for this resistance, whereby A58T forms a hydrogen bond with the R79E side chain, which positions its negatively-charged carboxylate group to electrostatically repulse a neonicotinoid at the orthosteric site. Together these findings describe the first case of target-site resistance to neonicotinoids in B. tabaci and provide insight into the molecular determinants of neonicotinoid binding and selectivity.


Subject(s)
Hemiptera , Insecticides , Receptors, Nicotinic , Animals , Receptors, Nicotinic/genetics , Insecticides/pharmacology , Hemiptera/genetics , Drosophila melanogaster , Neonicotinoids/pharmacology , Mutation
2.
Nat Methods ; 20(8): 1174-1178, 2023 08.
Article in English | MEDLINE | ID: mdl-37468619

ABSTRACT

Multiplexed antibody-based imaging enables the detailed characterization of molecular and cellular organization in tissues. Advances in the field now allow high-parameter data collection (>60 targets); however, considerable expertise and capital are needed to construct the antibody panels employed by these methods. Organ mapping antibody panels are community-validated resources that save time and money, increase reproducibility, accelerate discovery and support the construction of a Human Reference Atlas.


Subject(s)
Antibodies , Community Resources , Humans , Reproducibility of Results , Diagnostic Imaging
3.
Small ; 20(11): e2304088, 2024 Mar.
Article in English | MEDLINE | ID: mdl-37939310

ABSTRACT

The use of natural cartilage extracellular matrix (ECM) has gained widespread attention in the field of cartilage tissue engineering. However, current approaches for delivering functional scaffolds for osteoarthritis (OA) therapy rely on knee surgery, which is limited by the narrow and complex structure of the articular cavity and carries the risk of injuring surrounding tissues. This work introduces a novel cell microcarrier, magnetized cartilage ECM-derived scaffolds (M-CEDSs), which are derived from decellularized natural porcine cartilage ECM. Human bone marrow mesenchymal stem cells are selected for their therapeutic potential in OA treatments. Owing to their natural composition, M-CEDSs have a biomechanical environment similar to that of human cartilage and can efficiently load functional cells while maintaining high mobility. The cells are released spontaneously at a target location for at least 20 days. Furthermore, cell-seeded M-CEDSs show better knee joint function recovery than control groups 3 weeks after surgery in preclinical experiments, and ex vivo experiments reveal that M-CEDSs can rapidly aggregate inside tissue samples. This work demonstrates the use of decellularized microrobots for cell delivery and their in vivo therapeutic effects in preclinical tests.


Subject(s)
Cartilage, Articular , Mesenchymal Stem Cells , Osteoarthritis , Animals , Swine , Humans , Cartilage, Articular/physiology , Tissue Engineering , Extracellular Matrix/chemistry , Magnetic Phenomena , Tissue Scaffolds/chemistry
4.
J Org Chem ; 89(3): 1657-1668, 2024 Feb 02.
Article in English | MEDLINE | ID: mdl-38241608

ABSTRACT

Herein, we report a heterogeneous visible light-driven preparation of α-alkylated glycine derivatives. This approach employed a ß-ketoenamine-linked covalent organic framework (2D-COF-4) as the heterogeneous photocatalyst and N-hydroxy phthalimide (NHPI) esters as the alkyl radical sources. Numerous glycine derivatives, including dipeptides, were precisely and efficiently alkylated under visible light-driven reaction conditions. Based on the excellent photoactivity and organic reaction compatibility of 2D-COF-4, this alkylation could proceed flexibly in a green solvent (ethanol) without any other additives. The photocatalyst and phthalimide were fruitfully recycled with a simple workup procedure, revealing a high ecoscale value and low environmental factor (E-factor).

5.
J Chem Inf Model ; 64(8): 3503-3523, 2024 Apr 22.
Article in English | MEDLINE | ID: mdl-38517012

ABSTRACT

As severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants continuously emerge, an increasing number of mutations are accumulating in the Spike protein receptor-binding domain (RBD) region. Through sequence analysis of various Variants of Concern (VOC), we identified that they predominantly fall within the ο lineage although recent variants introduce any novel mutations in the RBD. Molecular dynamics simulations were employed to compute the binding free energy of these variants with human Angiotensin-converting enzyme 2 (ACE2). Structurally, the binding interface of the ο RBD displays a strong positive charge, complementing the negatively charged binding interface of ACE2, resulting in a significant enhancement in the electrostatic potential energy for the ο variants. Although the increased potential energy is partially offset by the rise in polar solvation free energy, enhanced electrostatic potential contributes to the long-range recognition between the ο variant's RBD and ACE2. We also conducted simulations of glycosylated ACE2-RBD proteins. The newly emerged ο (JN.1) variant has added a glycosylation site at N-354@RBD, which significantly weakened its binding affinity with ACE2. Further, our interaction studies with three monoclonal antibodies across multiple SARS-CoV-2 strains revealed a diminished neutralization efficacy against the ο variants, primarily attributed to the electrostatic repulsion between the antibodies and RBD interface. Considering the characteristics of the ο variant and the trajectory of emerging strains, we propose that newly developed antibodies against SARS-CoV-2 RBD should have surfaces rich in negative potential and, postbinding, exhibit strong van der Waals interactions. These findings provide invaluable guidance for the formulation of future therapeutic strategies.


Subject(s)
Angiotensin-Converting Enzyme 2 , COVID-19 , Immune Evasion , Molecular Dynamics Simulation , Protein Domains , SARS-CoV-2 , Spike Glycoprotein, Coronavirus , SARS-CoV-2/immunology , SARS-CoV-2/genetics , Humans , Angiotensin-Converting Enzyme 2/metabolism , Angiotensin-Converting Enzyme 2/chemistry , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/metabolism , Spike Glycoprotein, Coronavirus/immunology , COVID-19/virology , COVID-19/immunology , Protein Binding , Mutation , Static Electricity , Amino Acid Sequence , Thermodynamics
6.
Bioorg Med Chem ; 100: 117631, 2024 Feb 15.
Article in English | MEDLINE | ID: mdl-38330848

ABSTRACT

Acute myeloid leukemia (AML) is the most common type of blood cancer and has been strongly correlated with the overexpression of Fms-like tyrosine kinase 3 (FLT3), a member of the class III receptor tyrosine kinase family. With the emergence of FLT3 internal tandem duplication alteration (ITD) and tyrosine kinase domain (TKD) mutations, the development of FLT3 small molecule inhibitors has become an effective medicinal chemistry strategy for AML. Herein, we have designed and synthesized two series of 1H-pyrrolo[2,3-b]pyridine derivatives CM1-CM24, as FLT3 inhibitors based on F14, which we previously reported, that can target the hydrophobic FLT3 back pocket. Among these derivates, CM5 showed significant inhibition of FLT3 and FLT3-ITD, with inhibitory percentages of 57.72 % and 53.77 % respectively at the concentration of 1 µΜ. Furthermore, CM5 demonstrated potent inhibition against FLT3-dependent human AML cell lines MOLM-13 and MV4-11 (both harboring FLT3-ITD mutant), with IC50 values of 0.75 µM and 0.64 µM respectively. In our cellular mechanistic studies, CM5 also effectively induces apoptosis by arresting cell cycle progression in the G0/G1 phase. In addition, the amide and urea linker function were discussed in detail based on computational simulations studies. CM5 will serve as a novel lead compound for further structural modification and development of FLT3 inhibitors specifically targeting AML with FLT3-ITD mutations.


Subject(s)
Leukemia, Myeloid, Acute , fms-Like Tyrosine Kinase 3 , Humans , Apoptosis , Cell Line, Tumor , fms-Like Tyrosine Kinase 3/antagonists & inhibitors , Leukemia, Myeloid, Acute/drug therapy , Leukemia, Myeloid, Acute/metabolism , Mutation , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/chemistry , Pyridines/pharmacology
7.
Ecotoxicology ; 33(3): 239-252, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38573560

ABSTRACT

Despite the prevalence of discharge of large volumes of heavy-metal-bearing seawater from coal-fired power plants into adjacent seas, studies on the associated ecological risks remain limited. This study continuously monitored concentrations of seven heavy metals (i.e. As, Cd, Cr, Cu, Hg, Pb, and Zn) in surface seawater near the outfall of a coal-fired power plant in Qingdao, China over three years. The results showed average concentrations of As, Cd, Cr, Cu, Hg, Pb, and Zn of 2.63, 0.33, 2.97, 4.63, 0.008, 0.85, and 25.00 µg/L, respectively. Given the lack of data on metal toxicity to local species, this study investigated species composition and biomass near discharge outfalls and constructed species sensitivity distribution (SSD) curves with biological flora characteristics. Hazardous concentrations for 5% of species (HC5) for As, Cd, Cr, Cu, Hg, Pb, and Zn derived from SSDs constructed from chronic toxicity data for native species were 3.23, 2.22, 0.06, 2.83, 0.66, 4.70, and 11.07 µg/L, respectively. This study further assessed ecological risk of heavy metals by applying the Hazard Quotient (HQ) and Joint Probability Curve (JPC) based on long-term heavy metal exposure data and chronic toxicity data for local species. The results revealed acceptable levels of ecological risk for As, Cd, Hg, and Pb, but unacceptable levels for Cr, Cu, and Zn. The order of studied heavy metals in terms of ecological risk was Cr > Cu ≈ Zn > As > Cd ≈ Pb > Hg. The results of this study can guide the assessment of ecological risk at heavy metal contaminated sites characterized by relatively low heavy metal concentrations and high discharge volumes, such as receiving waters of coal-fired power plant effluents.


Subject(s)
Mercury , Metals, Heavy , Soil Pollutants , Environmental Monitoring/methods , Cadmium , Lead , Metals, Heavy/toxicity , Seawater , Risk Assessment , Power Plants , China , Coal , Soil , Soil Pollutants/analysis
8.
Zhongguo Zhong Yao Za Zhi ; 49(7): 1905-1914, 2024 Apr.
Article in Zh | MEDLINE | ID: mdl-38812203

ABSTRACT

This study aimed to explore the mechanism of Shexiang Tongxin Dropping Pills(STDP) in treating diabetic cardiomyopathy(DCM) based on network pharmacology, molecular docking, and animal experiments. BATMAN, TCMSP, and GeneCards were searched for the active ingredients and targets of STDP against DCM. STRING and Cytoscape were used to build the protein-protein interaction(PPI) network and "drug-active ingredient-target" network. Gene Ontology(GO) functional annotation and Kyoto Encyclopedia of Genes and Genomes(KEGG) enrichment analysis of the targets were carried out based on DAVID. The molecular docking of key receptor proteins with corresponding active ingredients was performed using AutoDock Vina. The rat model of DCM was established by a high-fat diet combined with intraperitoneal injection of streptozotocin. Rats were assigned into control, model, low-(20 mg·kg~(-1)) and high-dose(40 mg·kg~(-1)) STDP, and metformin(200 mg·kg~(-1)) groups. After 8 weeks of continuous administration, the cardiac function, myocardial pathological changes, and myocardial collagen fiber deposition of rats in each group were detected by echocardiography, hematoxylin-eosin(HE) staining, and Sirius red staining, respectively. The myocardial hypertrophy was detected by WGA staining. The expression levels of p38 mitogen-activated protein kinase(p38), phosphorylation-p38(p-p38), c-Jun N-terminal kinase(JNK), phosphorylation-JNK(p-JNK), caspase-3, and C-caspase-3 in the myocardial tissue of rats in each group were measured by Western blot. The network pharmacology predicted 199 active ingredients and 1 655 targets of STDP and 463 targets of DCM. One hundred and thirty-four potential targets of STDP for treating DCM were obtained, and the AGE-RAGE signaling pathway in diabetic complications was screened out. Molecular docking results showed that miltirone, dehydromiltirone, and tryptanthrin had strong binding affinity with RAGE. The results of animal experiments confirmed that STDP effectively protected the cardiac function of DCM rats. Compared with the DCM model group, the STDP groups showed significantly down-regulated protein levels of p-p38, p-JNK, and C-caspase-3. To sum up, STDP may protect the cardiac function of DCM rats by regulating the AGE-RAGE signaling pathway.


Subject(s)
Diabetic Cardiomyopathies , Drugs, Chinese Herbal , Molecular Docking Simulation , Network Pharmacology , Animals , Diabetic Cardiomyopathies/drug therapy , Diabetic Cardiomyopathies/metabolism , Diabetic Cardiomyopathies/genetics , Drugs, Chinese Herbal/pharmacology , Drugs, Chinese Herbal/chemistry , Drugs, Chinese Herbal/administration & dosage , Rats , Male , Rats, Sprague-Dawley , Humans
9.
Small ; 19(47): e2303615, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37501326

ABSTRACT

Current research on hemostatic materials have focused on the inhibition of visible hemorrhage, however, invisible hemorrhage is the unavoidable internal bleeding that occurs after trauma or surgery, leading directly to a dramatic drop in hemoglobin and then to anemia and even death. In this study, bacterial nanocellulose (BNC) was synthesized and oxidized from the primary alcohols to carboxyl groups, and then grafted with tranexamic acid through amide bonds to construct degradable nanoscale short fibers (OBNC-TXA), which rapidly activated the coagulation response. The hemostatic material is made up of nanoscale short fibers that can be constructed into different forms such as emulsions, gels, powders, and sponges to meet different clinical applications. In the hemostatic experiments in vitro, the composites had significantly superior pro-coagulant properties due to the rapid aggregation of blood cells. In the coagulation experiments with rat tail amputation and liver trauma hemorrhage models, the group treated with OBNC-TXA1 sponge showed low hemorrhage and inhibited invisible hemorrhage in rectus abdominis muscle defect hemorrhage models, with a rapid recovery of hemoglobin values from 128±5.5 to 165±2.6 g L-1 within 4 days. In conclusion, the degradable short fibers constructed from bacterial nano-cellulose achieved inhibition of invisible hemorrhage in vivo.


Subject(s)
Hemostatics , Liver Diseases , Tranexamic Acid , Rats , Animals , Tranexamic Acid/pharmacology , Tranexamic Acid/therapeutic use , Hemorrhage/drug therapy , Hemostatics/pharmacology , Hemostatics/therapeutic use , Blood Coagulation , Hemoglobins/pharmacology , Hemoglobins/therapeutic use
10.
Mol Carcinog ; 62(6): 833-844, 2023 06.
Article in English | MEDLINE | ID: mdl-36920042

ABSTRACT

AKR1C3 is frequently overexpressed and it is a validated therapeutic target in various tumors including hepatocellular carcinoma (HCC). Our previous study showed that AKR1C3 facilitated HCC proliferation and metastasis by forming a positive feedback loop of AKR1C3-NF-κB-STAT3. Ferroptosis is a form of iron-dependent cell death driven by iron-dependent accumulation of lipid reactive oxygen species and plays an important role in tumor suppression. However, little is known about the role of AKR1C3 in ferroptosis susceptibility. In this study, we found that knockdown of AKR1C3 potently enhanced the sensitivity of HCC cells to ferroptosis inducers both in vitro and in vivo. Overexpression of AKR1C3 protected against ferroptosis in HCC cells. Mechanistically, AKR1C3 regulated ferroptosis through YAP/SLC7A11 signaling in HCC. AKR1C3 knockdown led to a decrease in YAP nuclear translocation, resulted in the inhibition of cystine transporter SLC7A11, and a subsequent increase in the intracellular levels of ferrous iron and ultimately ferroptosis. Moreover, we found that the combination of AKR1C3 and SLC7A11 was a strong predictor of poor prognosis in HCC. Collectively, these findings identify a novel role of AKR1C3 in ferroptosis, and highlighting a candidate therapeutic target to potentially improve the effect of ferroptosis-based antitumor therapy.


Subject(s)
Carcinoma, Hepatocellular , Ferroptosis , Liver Neoplasms , Humans , Carcinoma, Hepatocellular/genetics , Ferroptosis/genetics , Liver Neoplasms/genetics , Signal Transduction , Iron , Aldo-Keto Reductase Family 1 Member C3 , Amino Acid Transport System y+/genetics
11.
Mol Carcinog ; 62(2): 261-276, 2023 02.
Article in English | MEDLINE | ID: mdl-36345938

ABSTRACT

To identify Musashi2 as an effective biomarker regulated by the TGF-ß/Smad2/3 signaling pathway for the precise diagnosis and treatment of colorectal cancer (CRC) through bioinformatic tools and experimental verification. The Cancer Genome Atlas, Timer, and Kaplan-Meier analyses were performed to clarify the expression of Musashi2 and its influence on the prognosis of CRC. Transforming growth factor beta 1 (TGF-ß1) was used to activate the TGF-ß/Smad2/3 signaling pathway to identify whether it could regulate the expression and function of Musashi2. Western blot analysis and quantitative PCR analyses were conducted to verify the expression of Musashi2. Cell counting kit-8 (CCK8), EdU, wound healing, and Transwell assays were conducted to reveal the role of Musashi2 in the proliferation, migration, and invasion of CRC. Musashi2 was upregulated in CRC and promoted proliferation and metastasis. TGF-ß1 increased the expression of Musashi2, while the antagonist inducer of type II TGF-ß receptor degradation-1 (ITD-1) decreased the expression. CCK8 and EdU assays demonstrated that inhibition of Musashi2 or use of ITD-1 lowered proliferation ability. The Transwell and wound healing assays showed that the migration and invasion abilities of CRC cells could be regulated by Musashi2. The above functions could be enhanced by TGF-ß1 by activating the TGF-ß/Smad2/3 signaling pathway and reversed by ITD-1. A positive correlation was found between Musashi2 and the TGF-ß/Smad2/3 signaling pathway. TGF-ß1 activates the TGF-ß/Smad2/3 pathway to stimulate the expression of Musashi2, which promotes the progression of CRC. Musashi2 might become a target gene for the development of new antitumor drugs.


Subject(s)
Colorectal Neoplasms , Transforming Growth Factor beta , Humans , Cell Line, Tumor , Cell Movement , Cell Proliferation , Colorectal Neoplasms/pathology , Epithelial-Mesenchymal Transition/genetics , Receptor, Transforming Growth Factor-beta Type II , Signal Transduction , Smad2 Protein/genetics , Smad2 Protein/metabolism , Smad2 Protein/pharmacology , Transforming Growth Factor beta/metabolism , Transforming Growth Factor beta1/genetics , Transforming Growth Factor beta1/metabolism
12.
Exp Eye Res ; 233: 109549, 2023 08.
Article in English | MEDLINE | ID: mdl-37348673

ABSTRACT

Smad ubiquitylation regulatory factor-1 (Smurf1) is one of C2-WW-HECT domain E3 ubiquitin ligases, it can regulate BMP pathway by mediating ubiquitylation degradation of Smad1/Smad5. Many functions about Smurf1 also are still unknown, especially in retina. This research is about to explore the role of Smurf1 in retina degeneration. Tail vein injection of sodium iodate (NaIO3) in C57BL/6J mice was the animal model of retina degeneration. In NaIO3 model, Smurf1 had more expression than normal mice. Specific Smurf1 inhibitor, A01, was injected into vitreous cavity. Results showed that inhibiting Smurf1 could alleviate acute retina injury, such as keeping a better retina structure in living imaging and histologic sections, less cell death and inflammation activation. Tert-butyl hydroperoxide (TBH) was used to establish oxidative stress injury in human retinal pigments epithelial cell line (ARPE-19). Oxidative stress injury gradually caused co-upregulation of Smurf1, TGF-ß1 and phosphorylated NF-κB (pNF-κB). TGF-ß1 could directly induce Smurf1 expression. Inhibiting Smurf1 had an anti-epithelial mesenchymal transition (anti-EMT) function. Similarly, A01 also could inhibit the expression of pNF-κB, NLRP3 and IL-1ß. At last, after searching bioinformatics database, Smurf1 had a possible interaction with beta-transducin repeat containing E3 ubiquitin protein ligase (ß-TrCP), another E3 ubiquitin ligases. ß-TrCP can mediate ubiquitination degradation of p-IκBα. Lentivirus-SMURF1 was used to overexpress Smurf1, and GS143 was used to inhibit ß-TrCP. The results showed Smurf1 could directly induce NF-κB, pNF-κB, and NLRP3 expression, and keep a stable ß-TrCP expression. However, inhibiting ß-TrCP could cause more NF-κB activation and NLRP3 expression. Therefore, ß-TrCP may play a negative role in NF-κB pathway activation. In summary, Smurf1 plays a role in exacerbating oxidative stress injury and inflammation in retina and may become a potential therapeutic target in ROS injury of retina.


Subject(s)
Macular Degeneration , NF-kappa B , Humans , Animals , Mice , NF-kappa B/metabolism , Transforming Growth Factor beta1/metabolism , beta-Transducin Repeat-Containing Proteins/genetics , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Mice, Inbred C57BL , Ubiquitin-Protein Ligases/genetics , Ubiquitination , Inflammation , Ubiquitins/metabolism
13.
J Org Chem ; 88(23): 16365-16375, 2023 Dec 01.
Article in English | MEDLINE | ID: mdl-37948572

ABSTRACT

The Cp*Ir-catalyzed C8-selective arylation of quinoline N-oxides with arylsilanes is developed. This C-H activation transformation can be carried out under mild reaction conditions in good yields with a broad substrate scope and excellent functional-group tolerance. This protocol can be easily used to synthesize diverse quinoline derivatives and enable the late-stage modification of quinoline drugs. A plausible reaction mechanism is elucidated based on a series of preliminary mechanistic studies.

14.
Mol Biol Rep ; 50(9): 7437-7444, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37479877

ABSTRACT

BACKGROUND: We compared the bone microstructure and metabolism of the femoral heads in patients with osteoporosis (OP) and non-OP patients to investigate the pathologic mechanism of OP and guide clinical treatment. METHODS AND RESULTS: From January 2020 to June 2021, we obtained femoral head samples from 30 patients undergoing hip replacement due to femoral neck fracture. All patients were women aged approximately 67 to 80 years (mean age, 74 years). According to the dual-energy X-ray results, the femoral head samples were divided into the OP (T< - 2.5) and non-OP (T > - 1.5) groups. Microcomputed tomography scanning, bone metrology analysis, hematoxylin and eosin staining, and Masson's trichrome staining were used to compare the local bone trabecular microstructure changes. Quantitative reverse transcription PCR was performed to identify changes in the osteogenesis-related genes and the osteoclast-related genes in specific regions to reflect osteogenic and osteoclastic activities. Femoral heads with OP showed significant changes in the local bone microstructure. Bone density, bone volume fraction, and the number and thickness of the bone trabeculae decreased. Local bone metabolism was imbalanced in the areas with microstructural changes in femoral heads with OP, with increased osteoclast activity and decreased osteoblast activity. CONCLUSIONS: Deterioration of bone microstructure is closely related to abnormal bone metabolism associated with the activity of osteoblasts and osteoclasts in osteoporotic femoral heads. Promoting bone formation by improving local bone metabolism, enhancing osteogenic activity and inhibiting osteoclast activity may be a promising way of preventing local OP and osteoporotic fractures.


Subject(s)
Femur Head , Osteoporosis , Humans , Female , Aged , Male , Femur Head/diagnostic imaging , X-Ray Microtomography , Osteoclasts , Osteogenesis
15.
Cell Mol Biol (Noisy-le-grand) ; 69(12): 57-64, 2023 Nov 30.
Article in English | MEDLINE | ID: mdl-38063117

ABSTRACT

This study aimed to study the impact of multidisciplinary team collaboration on NGF, BDNF, serum IGF-1, and life quality in patients with hemiplegia after stroke. For this purpose, 200 post-stroke hemiplegic patients admitted from March 2022 to February 2023 were selected and randomly divided into a control group (100) and an observation group (100). The control group was given routine nursing care, while the observation group was given a multidisciplinary team collaboration model. The neurotroph in [nerve growth factor (NGF), brain-derived neurotrophic factor (BDNF), insulin-like growth factor-1 (IGF-1)] and nutritional status [hemoglobin (HGB), serum albumin (ALB), transferrin (TRF)] of patients were compared before and after the intervention on the second day of admission and on the 30th day of intervention. The FUGL Meyer (FM) motor function assessment scale, NIHSS National Institutes of Health Stroke Scale, and the Specialized Quality of Life Scale (SS-QIL) for stroke patients were used to assess limb motor function, balance function, degree of neurological impairment, and life quality. Results showed that before intervention, there was no statistically significant difference in the levels of NGF, BDNF, IGF-1, HGB, ALB, TRF, limb motor function, balance function, neurological deficits, and quality of life scores between the two (P>0.05); After intervention, the levels of NGF, BDNF, IGF-1, HGB, ALB, and TRF in the observation group were significantly higher (P<0.05); The FM and SS-QOL of patients in the observation group were significantly higher (P<0.05); The NIHSS score of patients in the observation group was significantly lower (P<0.05). In conclusion, multidisciplinary team cooperation can significantly improve the level of neurotrophin, reduce the degree of nerve defect, and promote the recovery of limb function, balance function and life quality for stroke patients with hemiplegia.


Subject(s)
Quality of Life , Stroke , Humans , Brain-Derived Neurotrophic Factor , Hemiplegia/genetics , Hemiplegia/therapy , Insulin-Like Growth Factor I , Nerve Growth Factor , Patient Care Team , Stroke/complications , Stroke/genetics , Stroke/therapy , Treatment Outcome
16.
Bioorg Chem ; 140: 106814, 2023 11.
Article in English | MEDLINE | ID: mdl-37657197

ABSTRACT

Phosphatidylinositol 3-kinase (PI3K) signaling is among the most common alterations in cancer and has become a key target for cancer drug development. Based on a 4-methyl quinazoline scaffold, we designed and synthesized a novel series of bivalent PI3K inhibitors with different linker lengths and types. Bivalent PI3K inhibitor 27 demonstrates improved PI3K potency and antiproliferative cell activity, relative to the corresponding monovalent inhibitor 11. Compound 27 also significantly blocks the PI3K signal pathway, induces cell cycle arrest in G1 phase, and inhibits colony formation and cell migration. Furthermore, compound 27 shows dose-dependent anticancer efficacies in a HGC-27 xenograft mice model. Overall, this work provides a possible strategy to discover novel PI3K inhibitors for the treatment of cancers.


Subject(s)
Neoplasms , Phosphatidylinositol 3-Kinases , Humans , Animals , Mice , Neoplasms/drug therapy , Phosphatidylinositol 3-Kinase , Cell Movement , Disease Models, Animal , Phosphoinositide-3 Kinase Inhibitors/pharmacology
17.
BMC Womens Health ; 23(1): 595, 2023 11 13.
Article in English | MEDLINE | ID: mdl-37953251

ABSTRACT

BACKGROUND: Ovarian neuroendocrine carcinoma (O-NEC) is a relatively uncommon neoplasm, and the current knowledge regarding its diagnosis and management is limited. In this series, our objective was to provide an overview of the clinicopathological characteristics of the disease by analyzing clinical case data to establish a theoretical foundation for the diagnosis and management of O-NEC. CASE PRESENTATION: We included three patients in the present case series, all of whom were diagnosed with primary O-NEC based on pathomorphological observation and immunohistochemistry. Patient 1 was a 62-year-old patient diagnosed with small cell carcinoma (SCC) of the pulmonary type. Post-surgery, the patient was diagnosed with stage II SCC of the ovary and underwent standardized chemotherapy; however, imaging examinations conducted at the 16-month follow-up revealed the existence of lymph node metastasis. Unfortunately, she passed away 21 months after the surgery. The other two patients were diagnosed with carcinoid tumors, one at age 39 and the other at age 71. Post-surgery, patient 2 was diagnosed with a carcinoid in the left ovary, whereas patient 3 was diagnosed with a carcinoid in her right ovary based on clinical evaluation. Neither of the cases received adjuvant therapy following surgery; however, they have both survived for 9 and 10 years, respectively, as of date. CONCLUSION: Primary O-NECs are rare and of diverse histological types, each of which has its own unique biological features and prognosis. SCC is a neoplasm characterized by high malignancy and a poor prognosis, whereas carcinoid tumors are of lesser malignancy and have a more favorable prognosis.


Subject(s)
Carcinoid Tumor , Carcinoma, Neuroendocrine , Carcinoma, Small Cell , Neuroendocrine Tumors , Ovarian Neoplasms , Female , Humans , Adult , Aged , Middle Aged , Carcinoma, Neuroendocrine/diagnosis , Carcinoma, Neuroendocrine/therapy , Carcinoma, Neuroendocrine/pathology , Neuroendocrine Tumors/diagnosis , Neuroendocrine Tumors/pathology , Prognosis , Carcinoma, Small Cell/diagnosis , Carcinoma, Small Cell/therapy , Carcinoma, Small Cell/pathology , Carcinoid Tumor/diagnosis , Carcinoid Tumor/pathology , Carcinoma, Ovarian Epithelial , Ovarian Neoplasms/diagnosis , Ovarian Neoplasms/therapy
18.
BMC Musculoskelet Disord ; 24(1): 378, 2023 May 12.
Article in English | MEDLINE | ID: mdl-37173724

ABSTRACT

BACKGROUND: Knee osteoarthritis (KOA) causes not only pain, stiffness, and dysfunction of the knee, but also the reduction of the joint range of motion (ROM). This study explored the demographic and radiographic factors for knee symptoms and ROM in patients with symptomatic KOA. METHODS: The demographic variables, Kellgren-Lawrence (KL) grade, and the Western Ontario and McMaster Universities Osteoarthritis Index (WOMAC) of patients with symptomatic KOA recruited in Beijing were collected. The knee ROM of all patients were also measured. We analyzed the influencing factors for WOMAC and ROM using a generalize linear model, respectively. RESULTS: This study included a total of 2034 patients with symptomatic KOA, including 530 males (26.1%) and 1504 females (73.0%), with a mean age of 59.17 (± 10.22) years. Patients with advanced age, overweight or obesity, a family history of KOA, a moderate-to-heavy manual labor job and use of nonsteroidal anti-inflammatory drugs (NSAIDs) had significantly higher WOMAC and lower ROM (all P < 0.05). The more the comorbidities, the higher the WOMAC (all P < 0.05). Patients with higher education had better ROM than those with only an elementary education(ß = 4.905, P < 0.05). Compared with those KL = 0/1, the WOMAC of patients whose KL = 4 were higher (ß = 0.069, P < 0.05), but the WOMAC of those KL = 2 were lower (ß = -0.068, P < 0.05). ROM decreased with the increase of KL grade (all P < 0.05). CONCLUSIONS: KOA patients with advanced age, overweight or obesity, a family history of KOA in first-degree relatives, a moderate-to-heavy manual labor job tended to have more severe clinical symptoms and worse ROM. Patients with more severe imaging lesions tend to have poorer ROM. Symptom management measures and regular ROM screening should be taken early to these people.


Subject(s)
Osteoarthritis, Knee , Male , Female , Humans , Middle Aged , Osteoarthritis, Knee/diagnostic imaging , Osteoarthritis, Knee/epidemiology , Beijing , Cross-Sectional Studies , Overweight , Knee Joint , Range of Motion, Articular , Obesity , Demography
19.
Pestic Biochem Physiol ; 194: 105469, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37532310

ABSTRACT

Bemisia tabaci (Hemiptera: Gennadius) is a notorious pest that is capable of feeding on >600 kinds of agricultural crops. Imidacloprid is critical in managing pest with sucking mouthparts, such as B. tabaci. However, the field population of B. tabaci has evolved resistance because of insecticide overuse. The overexpression of the detoxification enzyme cytochrome P450 monooxygenase is considered the main mechanism of imidacloprid resistance, but the mechanism underlying gene regulation remains unclear. MicroRNAs are a type of endogenous small molecule compounds that is fundamental in regulating gene expression at the post-transcriptional level. Whether miRNAs are related to the imidacloprid resistance of B. tabaci remains unknown. To gain deep insight into imidacloprid resistance, we conducted on miRNAs expression profiling of two B. tabaci Mediterranean (MED) strains with 19-fold resistance through deep sequencing of small RNAs. A total of 8 known and 1591 novel miRNAs were identified. In addition, 16 miRNAs showed significant difference in expression levels between the two strains, as verified by quantitative reverse transcription PCR. Among these, novel_miR-376, 1517, and 1136 significantly expressed at low levels in resistant samples, decreasing by 36.9%, 60.2%, and 15.6%, respectively. Moreover, modulating novel_miR-1517 expression by feeding with 1517 inhibitor and 1517 mimic significantly affected B. tabaci imidacloprid susceptibility by regulating CYP6CM1 expression. In this article, miRNAs related to imidacloprid resistance of B. tabaci were systematically screened and identified, providing important information for the miRNA-based technological innovation for this pest management.


Subject(s)
Hemiptera , Insecticides , MicroRNAs , Animals , Hemiptera/metabolism , Insecticide Resistance/genetics , Neonicotinoids/pharmacology , Neonicotinoids/metabolism , Insecticides/pharmacology , Insecticides/metabolism , Nitro Compounds/pharmacology , Nitro Compounds/metabolism , MicroRNAs/genetics
20.
Pestic Biochem Physiol ; 196: 105635, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37945266

ABSTRACT

The whitefly, Bemisia tabaci, comes up high metabolic resistance to most neonicotinoids in long-term evolution, which is the key problem of pest control. UGT glycosyltransferase, as a secondary detoxification enzyme, plays an indispensable role in detoxification metabolism. In this study, UGT inhibitors, 5-nitrouracil and sulfinpyrazone, dramatically augmented the toxic damage of neonicotinoids to B. tabaci. A UGT named UGT353G2 was identified in whitefly, which was notably up-regulated in resistant strain (3.92 folds), and could be induced by most neonicotinoids. Additionally, the using of RNA interference (RNAi) suppresses UGT353G2 substantially increased sensitivity to neonicotinoids in resistant strain. Our results support that UGT353G2 may be involved in the neonicotinoids resistance of whitefly. These findings will help further verify the functional role of UGTs in neonicotinoid resistance.


Subject(s)
Hemiptera , Insecticides , Animals , Neonicotinoids/pharmacology , Neonicotinoids/metabolism , Insecticides/pharmacology , Insecticides/metabolism , Hemiptera/metabolism , Nitro Compounds/pharmacology , Nitro Compounds/metabolism , Insecticide Resistance/genetics , Uridine Diphosphate/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL