Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
Int J Biol Macromol ; 225: 185-197, 2023 Jan 15.
Article in English | MEDLINE | ID: mdl-36328270

ABSTRACT

This work proposed a facile way to construct cellulose/chitosan-loaded Ag/Ag2O nanocomposite films (ACC) from alkali/urea solution by increasing the content of alkali KOH in the solvent. The saturated alkali and hydroxyl groups of the cellulose and chitosan chains were accelerated to convert AgNO3 to Ag0. Ag2O served as nuclei to lower the energy barrier. The formation of Ag/Ag2O nanoparticles (NPs) endowed the cellulose bio-reduced Ag composites with multifunction and stronger photocatalytic activity. Ag/Ag2O NPs with the diameter of 139-360 nm were uniformly dispersed in the composite films, resulting in superior mechanical properties (64.6 MPa) and thermal stability. Almost 92 % of methyl orange was degraded under UV-irradiation within 40 min by ACC. After 3 runs of degradation, the photocatalytic abilities of ACC remained. Moreover, the films exhibited good antibacterial activities. The width of inhibition zones around ACC reached 9.2-12 mm and 8.6-10.4 mm for S. aureus and E. coli. The strategy provided a new avenue to construct multifunctional cellulose/chitosan materials for various applications, such as wastewater treatment, and electrocatalysis.


Subject(s)
Chitosan , Metal Nanoparticles , Nanocomposites , Cellulose , Escherichia coli , Staphylococcus aureus , Anti-Bacterial Agents/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL