Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 440
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Proc Natl Acad Sci U S A ; 121(22): e2322935121, 2024 May 28.
Article in English | MEDLINE | ID: mdl-38771877

ABSTRACT

Current treatment options for diabetic wounds face challenges due to low efficacy, as well as potential side effects and the necessity for repetitive treatments. To address these issues, we report a formulation utilizing trisulfide-derived lipid nanoparticle (TS LNP)-mRNA therapy to accelerate diabetic wound healing by repairing and reprogramming the microenvironment of the wounds. A library of reactive oxygen species (ROS)-responsive TS LNPs was designed and developed to encapsulate interleukin-4 (IL4) mRNA. TS2-IL4 LNP-mRNA effectively scavenges excess ROS at the wound site and induces the expression of IL4 in macrophages, promoting the polarization from the proinflammatory M1 to the anti-inflammatory M2 phenotype at the wound site. In a diabetic wound model of db/db mice, treatment with this formulation significantly accelerates wound healing by enhancing the formation of an intact epidermis, angiogenesis, and myofibroblasts. Overall, this TS LNP-mRNA platform not only provides a safe, effective, and convenient therapeutic strategy for diabetic wound healing but also holds great potential for clinical translation in both acute and chronic wound care.


Subject(s)
Nanoparticles , RNA, Messenger , Reactive Oxygen Species , Wound Healing , Wound Healing/drug effects , Animals , Nanoparticles/chemistry , Mice , RNA, Messenger/genetics , RNA, Messenger/metabolism , Reactive Oxygen Species/metabolism , Macrophages/metabolism , Macrophages/drug effects , Interleukin-4/metabolism , Diabetes Mellitus, Experimental , Humans , Lipids/chemistry , Disease Models, Animal , Male , Liposomes
2.
Nano Lett ; 24(4): 1096-1105, 2024 Jan 31.
Article in English | MEDLINE | ID: mdl-38251670

ABSTRACT

Chemotherapy-induced liver injury (CILI) is a pressing concern in cancer patients. One promising approach involves activating nuclear factor erythroid 2-related factor 2 (Nrf2) to mitigate CILI. However, selectively activating liver Nrf2 without compromising chemotherapy's efficacy has remained elusive. Herein, two RNAi delivery strategies were explored: lipid nanoparticle (LNP) and N-acetylgalactosamine (GalNAc) delivery systems loaded with siRNA designed to silence Kelch-like-ECH associated protein 1 (Keap1) by aiming for liver-specific Nrf2 activation. Remarkably, siKeap1-LNP exhibited unintended tumor targeting alongside liver effects, thereby potentially promoting tumor progression. Conversely, siKeap1-GalNAc did not compromise chemotherapy efficacy and outperformed the conventional Nrf2 activator, bardoxolone, in mitigating CILI. This study proposes siKeap1-GalNAc as a promising therapeutic avenue for liver injury. Importantly, our study bridges a crucial gap concerning the delivery system for liver targeting but not tumor targeting and underscores the importance of selecting nucleic acid delivery systems tailored to specific diseases, not just to specific organs.


Subject(s)
Antineoplastic Agents , Liver Diseases , Neoplasms , Humans , Kelch-Like ECH-Associated Protein 1/metabolism , NF-E2-Related Factor 2/genetics , NF-E2-Related Factor 2/metabolism , Neoplasms/therapy , Antineoplastic Agents/therapeutic use
3.
Plant J ; 116(6): 1717-1736, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37751381

ABSTRACT

Wheat yellow mosaic virus (WYMV) causes severe wheat viral disease in Asia. However, the viral suppressor of RNA silencing (VSR) encoded by WYMV has not been identified. Here, the P1 protein encoded by WYMV RNA2 was shown to suppress RNA silencing in Nicotiana benthamiana. Mutagenesis assays revealed that the alanine substitution mutant G175A of P1 abolished VSR activity and mutant Y10A VSR activity remained only in younger leaves. P1, but not G175A, interacted with gene silencing-related protein, N. benthamiana calmodulin-like protein (NbCaM), and calmodulin-binding transcription activator 3 (NbCAMTA3), and Y10A interacted with NbCAMTA3 only. Competitive Bimolecular fluorescence complementation and co-immunoprecipitation assays showed that the ability of P1 disturbing the interaction between NbCaM and NbCAMTA3 was stronger than Y10A, Y10A was stronger than G175A. In vitro transcript inoculation of infectious WYMV clones further demonstrated that VSR-defective mutants G175A and Y10A reduced WYMV infection in wheat (Triticum aestivum L.), G175A had a more significant effect on virus accumulation in upper leaves of wheat than Y10A. Moreover, RNA silencing, temperature, and autophagy have significant effects on the accumulation of P1 in N. benthamiana. Taken together, WYMV P1 acts as VSR by interfering with calmodulin-associated antiviral RNAi defense to facilitate virus infection in wheat, which has provided clear insights into the function of P1 in the process of WYMV infection.


Subject(s)
Mosaic Viruses , Virus Diseases , RNA Interference , Triticum/genetics , Calmodulin/genetics , Virus Diseases/genetics , Mosaic Viruses/genetics , Plant Diseases/genetics
4.
J Neurochem ; 2024 Jan 03.
Article in English | MEDLINE | ID: mdl-38168728

ABSTRACT

Extracellular elastin-derived peptides (EDPs) accumulate in the aging brain and have been associated with vascular dementia and Alzheimer's disease (AD). The activation of inflammatory processes in glial cells with EDP treatment has received attention, but not in neurons. To properly understand EDPs' pathogenic significance, the impact on neuronal function and neuron-microglia crosstalk was explored further. Among the EDP molecules, Val-Gly-Val-Ala-Pro-Gly (VGVAPG) is a typical repeating hexapeptide. Here, we observed that EDPs-VGVAPG influenced neuronal survival and morphology in a dose-dependent manner. High concentrations of VGVAPG induced synapse loss and microglia hyperactivation in vivo and in vitro. Following EDP incubation, galectin 3 (Gal-3) released by neurons served as a chemokine, attracting microglial engulfment. Blocking Gal-3 and EDP binding remedied synapse loss in neurons and phagocytosis in microglia. In response to the accumulation of EDPs, proteomics in matrix remodeling and cytoskeleton dynamics, such as a disintegrin and metalloproteinase (ADAM) family, were engaged. These findings in extracellular EDPs provided more evidence for the relationship between aging and neuron dysfunction, increasing the insight of neuroinflammatory responses and the development of new specialized extracellular matrix remolding-targeted therapy options for dementia or other neurodegenerative disease.

5.
Int J Cancer ; 154(12): 2075-2089, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38367273

ABSTRACT

Females with existing high-risk HPV (HR-HPV) infections remain at risk of subsequent multiple or recurrent infections, on which benefit from HPV vaccines was under-reported. We pooled individual-level data from four large-scale, RCTs of AS04-HPV-16/18 vaccine to evaluate efficacy and immunogenicity in females DNA-positive to any HR-HPV types at first vaccination. Females receiving the AS04-HPV-16/18 vaccine in the original RCTs constituted the vaccine group in the present study, while those unvaccinated served as the control group. Vaccine efficacy (VE) against new infections and associated cervical intraepithelial neoplasia (CIN) 2+ in females DNA-negative to the considered HR-HPV type but positive to any other HR-HPV types, VE against reinfections in females DNA-positive to the considered HR-HPV type but cleared naturally during later follow-up, and levels of anti-HPV-16/18 IgG were assessed. Our final analyses included 5137 females (vaccine group = 2532, control group = 2605). The median follow-up time was 47.88 months (IQR: 45.72-50.04). For the prevention of precancerous lesions related to the non-infected HR-HPV types at baseline, VE against HPV-16/18 related CIN 2+ was 82.70% (95% CI: 63.70-93.00%). For the prevention of reinfections related to the infected HR-HPV types following natural clearance, VE against HPV-16/18 12MPI was non-significant (p > .05), albeit robust immunity persisted for at least 48 months. Females with existing HR-HPV infections at first vaccination still benefit from vaccination in preventing precancers related to the non-infected types at baseline. VE against reinfections related to the infected types following natural clearance remains to be further investigated.


Subject(s)
Papillomavirus Infections , Papillomavirus Vaccines , Uterine Cervical Dysplasia , Uterine Cervical Neoplasms , Female , Humans , Human papillomavirus 16 , Papillomavirus Vaccines/therapeutic use , Reinfection/complications , Human papillomavirus 18 , Vaccination , DNA
6.
Anal Chem ; 96(15): 5922-5930, 2024 Apr 16.
Article in English | MEDLINE | ID: mdl-38575388

ABSTRACT

Mitochondrial therapy is a promising new strategy that offers the potential to achieve precise disease diagnosis or maximum therapeutic response. However, versatile mitochondrial theranostic platforms that integrate biomarker detection and therapy have rarely been exploited. Here, we report a charge-reversal nanomedicine activated by an acidic microenvironment for mitochondrial microRNA (mitomiR) detection and ion-interference therapy. The transporter liposome (DD-DC) was constructed from a pH-responsive polymer and a positively charged phospholipid, encapsulating NaCl nanoparticles with coloading of the aggregation-induced emission (AIE) fluorogens AIEgen-DNA/G-quadruplexes precursor and brequinar (NAB@DD-DC). The negatively charged nanomedicine ensured good blood stability and high tumor accumulation, while the charge-reversal to positive in response to the acidic pH in the tumor microenvironment (TME) and lysosomes enhanced the uptake by tumor cells and lysosome escape, achieving accumulation in mitochondria. The subsequently released Na+ in mitochondria not only contributed to the formation of mitomiR-494 induced G-quadruplexes for AIE imaging diagnosis but also led to an osmolarity surge that was enhanced by brequinar to achieve effective ion-interference therapy.


Subject(s)
Biphenyl Compounds , G-Quadruplexes , MicroRNAs , Nanoparticles , Neoplasms , Quinaldines , Humans , Sodium Chloride , Neoplasms/diagnostic imaging , Neoplasms/therapy , Mitochondria , Hydrogen-Ion Concentration , Cell Line, Tumor , Tumor Microenvironment
7.
Anal Chem ; 2024 Feb 07.
Article in English | MEDLINE | ID: mdl-38324763

ABSTRACT

Microdevices that offer hyperglycemia monitoring and controllable drug delivery are urgently needed for daily diabetes management. Herein, a theranostic separable double-layer microneedle (DLMN) patch consisting of a swellable GelMA supporting base layer for glycemia sensing and a phase-change material (PCM) arrowhead layer for hyperglycemia regulation has been fabricated. The Cu-TCPP(Fe)/glucose oxidase composite and 3,3',5,5'-tetramethylbenzidine coembedded in the supporting base layer permit a visible color shift at the base surface in the presence of glucose via a cascade reaction, allowing for the in situ detection of glucose in interstitial fluid. The PCM arrowhead layer is encapsulated with water monodispersity melanin nanoparticles from Sepia officinalis and metformin that is imparted with a near-infrared ray photothermal response feature, which is beneficial to the controllable release of metformin for suppression of hyperglycemia. By applying the DLMN patch to the streptozotocin-induced type 2 diabetic Sprague-Dawley rat model, the results demonstrated that it can effectively extract dermal interstitial fluid, read out glucose levels, and regulate hyperglycemia. This DLMN-integrated portable colorimetric sensor and self-regulated glucose level hold great promise for daily diabetes management.

8.
BMC Plant Biol ; 24(1): 258, 2024 Apr 09.
Article in English | MEDLINE | ID: mdl-38594637

ABSTRACT

BACKGROUND: Weed control is essential for agricultural floor management in vineyards and the inter-row mulching is an eco-friendly practice to inhibit weed growth via filtering out photosynthetically active radiation. Besides weed suppression, inter-row mulching can influence grapevine growth and the accumulation of metabolites in grape berries. However, the complex interaction of multiple factors in the field challenges the understanding of molecular mechanisms on the regulated metabolites. In the current study, black geotextile inter-row mulch (M) was applied for two vintages (2016-2017) from anthesis to harvest. Metabolomics and transcriptomics analysis were conducted in two vintages, aiming to provide insights into metabolic and molecular responses of Cabernet Sauvignon grapes to M in a semi-arid climate. RESULTS: Upregulation of genes related to photosynthesis and heat shock proteins confirmed that M weakened the total light exposure and grapes suffered heat stress, resulting in lower sugar-acid ratio at harvest. Key genes responsible for enhancements in phenylalanine, glutamine, ornithine, arginine, and C6 alcohol concentrations, and the downward trend in ε-viniferin, anthocyanins, flavonols, terpenes, and norisoprenoids in M grapes were identified. In addition, several modules significantly correlated with the metabolic biomarkers through weighted correlation network analysis, and the potential key transcription factors regulating the above metabolites including VviGATA11, VviHSFA6B, and VviWRKY03 were also identified. CONCLUSION: This study provides a valuable overview of metabolic and transcriptomic responses of M grapes in semi-arid climates, which could facilitate understanding the complex regulatory network of metabolites in response to microclimate changes.


Subject(s)
Vitis , Wine , Vitis/metabolism , Transcriptome , Anthocyanins/metabolism , Microclimate , Farms , Fruit , Wine/analysis
9.
Article in English | MEDLINE | ID: mdl-38833104

ABSTRACT

PURPOSE: To comprehensively investigate the diagnostic performance of routinely used assays in MPXV testing, the National Center of Clinical Laboratories in China conducted a nationwide external quality assessment (EQA) scheme and an evaluated nine assays used by ≥ 5 laboratories in the EQA. METHODS: MPXV virus-like particles with 2700, 900 and 300 copies/mL were distributed to 195 EQA laboratories. For extended analysis, triple-diluted samples from 9000 to 4.12 copies/mL were repeated 20 times using the assays employed by ≥ 5 laboratories. The diagnostic performance was assessed by analyzing EQA data and calculating the limits of detection (LODs). RESULTS: The performance was competent in 87.69% (171/195) of the participants and 87.94% (175/199) of the datasets. The positive percentage agreements (PPAs) were greater than 99% for samples at 2700 and 900 copies/mL, and 95.60% (761/796) for samples at 300 copies/mL. The calculated LODs for the two clades ranged from 228.44 to 924.31 copies/mL and were greater than the LODs specified by the respective kits. EasyDiagnosis had the lowest calculated LODs and showed superior performance in EQA, whereas BioGerm and Sansure, with higher calculated LODs, did not perform well in EQA. CONCLUSION: This study provides valuable information from the EQA data and evaluation of the diagnostic performance of MPXV detection assays. It also provided insights into reagent optimization and enabled prompt public health interventions for the outbreak.

10.
Cereb Cortex ; 33(8): 4977-4989, 2023 04 04.
Article in English | MEDLINE | ID: mdl-36227200

ABSTRACT

Autism is often comorbid with other psychiatric disorders. We have previously shown that Dip2a knockout (KO) induces autism-like behaviors in mice. However, the role of Dip2a in other psychiatric disorders remains unclear. In this paper, we revealed that Dip2a KO mice had comorbid anxiety. Dip2a KO led to a reduction in the dendritic length of cortical and hippocampal excitatory neurons. Molecular mechanism studies suggested that AMPK was overactivated and suppressed the mTOR cascade, contributing to defects in dendritic morphology. Deletion of Dip2a in adult-born hippocampal neurons (Dip2a conditional knockout (cKO)) increased susceptibility to anxiety upon acute stress exposure. Application of (2R,6R)-hydroxynorketamine (HNK), an inhibitor of mTOR, rescued anxiety-like behaviors in Dip2a KO and Dip2a cKO mice. In addition, 6 weeks of high-fat diet intake alleviated AMPK-mTOR signaling and attenuated the severity of anxiety in both Dip2a KO mice and Dip2a cKO mice. Taken together, these results reveal an unrecognized function of DIP2A in anxiety pathophysiology via regulation of AMPK-mTOR signaling.


Subject(s)
AMP-Activated Protein Kinases , Signal Transduction , Mice , Animals , Mice, Knockout , TOR Serine-Threonine Kinases/metabolism , Anxiety/genetics , Nuclear Proteins
11.
J Nanobiotechnology ; 22(1): 196, 2024 Apr 21.
Article in English | MEDLINE | ID: mdl-38644492

ABSTRACT

Tumors desmoplastic microenvironments are characterized by abundant stromal cells and extracellular matrix (ECM) deposition. Cancer-associated fibroblasts (CAFs), as the most abundant of all stromal cells, play significant role in mediating microenvironments, which not only remodel ECM to establish unique pathological barriers to hinder drug delivery in desmoplastic tumors, but also talk with immune cells and cancer cells to promote immunosuppression and cancer stem cells-mediated drug resistance. Thus, CAFs mediated desmoplastic microenvironments will be emerging as promising strategy to treat desmoplastic tumors. However, due to the complexity of microenvironments and the heterogeneity of CAFs in such tumors, an effective deliver system should be fully considered when designing the strategy of targeting CAFs mediated microenvironments. Engineered exosomes own powerful intercellular communication, cargoes delivery, penetration and targeted property of desired sites, which endow them with powerful theranostic potential in desmoplastic tumors. Here, we illustrate the significance of CAFs in tumors desmoplastic microenvironments and the theranostic potential of engineered exosomes targeting CAFs mediated desmoplastic microenvironments in next generation personalized nano-drugs development.


Subject(s)
Cancer-Associated Fibroblasts , Exosomes , Tumor Microenvironment , Cancer-Associated Fibroblasts/metabolism , Exosomes/metabolism , Tumor Microenvironment/drug effects , Humans , Animals , Neoplasms/drug therapy , Neoplasms/metabolism , Neoplasms/pathology , Drug Delivery Systems/methods , Extracellular Matrix/metabolism , Antineoplastic Agents/pharmacology
12.
Xenobiotica ; 54(1): 38-44, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38085693

ABSTRACT

Gefitinib is the first-generation drug of epidermal growth factor receptor (EGFR) tyrosine kinase inhibitor (TKI) metabolised by the cytochrome P450 and transported by P-glycoprotein (ABCB1) and breast cancer resistance protein (ABCG2). In the present study, the pharmacokinetics of gefitinib in healthy Chinese volunteers was investigated and the effect of genetic polymorphisms on its variability was evaluted.Forty-five healthy volunteers were administered a single dose of gefitinib and the blood samples were used for quantifying the concentration of gefitinib and genotyping fifteen single-nucleotide polymorphisms of cytochrome P450 enzymes (CYP3A4, CYP3A5, CYP2D6, CYP2C9 and CYP2C19) and drug transporters (ABCB1 and ABCG2).CYP3A5*3 (rs776746) polymorphism showed a significant influence, with higher gefitinib AUC0-t in carrier of CC genotype than in CT/TT genotype (BH-adjusted p value <0.05). For CYP2C9*3 (rs1057910), significant differences in pharmacokinetics of gefitinib were detected between carriers of AA and AC genotypes, with higher AUC0-t, AUC0-∞ and Cmax in carrier of AC genotype than in AA gen-otype (BH-adjusted p value <0.05). No associations were found between SNPs in CYP3A4, CYP2D6, CYP2C19, ABCB1, ABCG2 and the pharmacokinetics of gefitinib.The SNPs in CYP3A5*3 (rs776746) and CYP2C9*3 (rs1057910) were found to be associated with altered gefitinib pharmacokinetics in healthy Chinese volunteers.


Subject(s)
Cytochrome P-450 CYP2D6 , Cytochrome P-450 CYP3A , Humans , Cytochrome P-450 CYP3A/genetics , Cytochrome P-450 CYP3A/metabolism , Gefitinib , ATP Binding Cassette Transporter, Subfamily G, Member 2/genetics , Cytochrome P-450 CYP2C19/genetics , Cytochrome P-450 CYP2C19/metabolism , Cytochrome P-450 CYP2D6/metabolism , Healthy Volunteers , Cytochrome P-450 CYP2C9/genetics , Cytochrome P-450 CYP2C9/metabolism , Neoplasm Proteins/genetics , Neoplasm Proteins/metabolism , Polymorphism, Single Nucleotide , Genotype , Cytochrome P-450 Enzyme System/genetics , Cytochrome P-450 Enzyme System/metabolism , China
13.
Sensors (Basel) ; 24(9)2024 Apr 29.
Article in English | MEDLINE | ID: mdl-38732930

ABSTRACT

The temperature and strain fields monitoring during the preparation process of buoyancy materials, as well as the health status after molding, are important for mastering the mechanical properties of buoyancy materials and ensuring the safety of operators and equipment. This paper proposes a short and high-density femtosecond fiber Bragg grating (fs-FBG) array based on different temperature coefficients fibers. By optimizing the parameters of femtosecond laser point-by-point writing technology, high-performance fs-FBG arrays with millimeter level gating length and millimeter level spatial resolution were prepared on two types of fibers. These were successfully embedded in buoyancy materials to achieve in-situ online monitoring of the curing process and after molding. The experimental results show that the fs-FBG array sensor has good anti-chirp performance and achieves online monitoring of millimeter-level spatial resolution. Intelligent buoyancy materials can provide real-time feedback on the health status of equipment in harsh underwater environments. The system can achieve temperature monitoring with an accuracy of 0.56 °C and deformation monitoring with sub-millimeter accuracy; the error is in the order of micrometers, which is of great significance in the field of deep-sea exploration.

14.
Sensors (Basel) ; 24(12)2024 Jun 13.
Article in English | MEDLINE | ID: mdl-38931601

ABSTRACT

Muscles play an indispensable role in human life. Surface electromyography (sEMG), as a non-invasive method, is crucial for monitoring muscle status. It is characterized by its real-time, portable nature and is extensively utilized in sports and rehabilitation sciences. This study proposed a wireless acquisition system based on multi-channel sEMG for objective monitoring of grip force. The system consists of an sEMG acquisition module containing four-channel discrete terminals and a host computer receiver module, using Bluetooth wireless transmission. The system is portable, wearable, low-cost, and easy to operate. Leveraging the system, an experiment for grip force prediction was designed, employing the bald eagle search (BES) algorithm to enhance the Random Forest (RF) algorithm. This approach established a grip force prediction model based on dual-channel sEMG signals. As tested, the performance of acquisition terminal proceeded as follows: the gain was up to 1125 times, and the common mode rejection ratio (CMRR) remained high in the sEMG signal band range (96.94 dB (100 Hz), 84.12 dB (500 Hz)), while the performance of the grip force prediction algorithm had an R2 of 0.9215, an MAE of 1.0637, and an MSE of 1.7479. The proposed system demonstrates excellent performance in real-time signal acquisition and grip force prediction, proving to be an effective muscle status monitoring tool for rehabilitation, training, disease condition surveillance and scientific fitness applications.


Subject(s)
Algorithms , Electromyography , Hand Strength , Electromyography/methods , Humans , Hand Strength/physiology , Male , Signal Processing, Computer-Assisted , Adult , Wearable Electronic Devices , Muscle, Skeletal/physiology , Monitoring, Physiologic/methods , Monitoring, Physiologic/instrumentation , Wireless Technology/instrumentation
15.
Inflammopharmacology ; 32(3): 1983-1998, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38642223

ABSTRACT

Ulcerative colitis (UC) is a severe hazard to human health. Since pathogenesis of UC is still unclear, current therapy for UC treatment is far from optimal. Isoxanthohumol (IXN), a prenylflavonoid from hops and beer, possesses anti-microbial, anti-oxidant, anti-inflammatory, and anti-angiogenic properties. However, the potential effects of IXN on the alleviation of colitis and the action of the mechanism is rarely studied. Here, we found that administration of IXN (60 mg/kg/day, gavage) significantly attenuated dextran sodium sulfate (DSS)-induced colitis, evidenced by reduced DAI scores and histological improvements, as well as suppressed the pro-inflammatory Th17/Th1 cells but promoted the anti-inflammatory Treg cells. Mechanically, oral IXN regulated T cell development, including inhibiting CD4+ T cell proliferation, promoting apoptosis, and regulating Treg/Th17 balance. Furthermore, IXN relieved colitis by restoring gut microbiota disorder and increasing gut microbiota diversity, which was manifested by maintaining the ratio of Firmicutes/Bacteroidetes balance, promoting abundance of Bacteroidetes and Ruminococcus, and suppressing abundance of proteobacteria. At the same time, the untargeted metabolic analysis of serum samples showed that IXN promoted the upregulation of D-( +)-mannose and L-threonine and regulated pyruvate metabolic pathway. Collectively, our findings revealed that IXN could be applied as a functional food component and served as a therapeutic agent for the treatment of UC.


Subject(s)
Colitis , Dextran Sulfate , Gastrointestinal Microbiome , Mice, Inbred C57BL , Xanthones , Gastrointestinal Microbiome/drug effects , Animals , Xanthones/pharmacology , Mice , Male , Colitis/drug therapy , Colitis/chemically induced , Metabolic Diseases/drug therapy , Colitis, Ulcerative/drug therapy , Colitis, Ulcerative/chemically induced , T-Lymphocytes, Regulatory/drug effects , T-Lymphocytes, Regulatory/metabolism , T-Lymphocytes/drug effects , T-Lymphocytes/metabolism , Th17 Cells/drug effects , Th17 Cells/metabolism , Anti-Inflammatory Agents/pharmacology , Disease Models, Animal
16.
Zhongguo Zhong Yao Za Zhi ; 49(4): 932-941, 2024 Feb.
Article in Zh | MEDLINE | ID: mdl-38621900

ABSTRACT

This study explored the biosynthesis of bufadienolides(BDs) in Bufo bufo gargarizans to solve the dilemma of the decreasing resources of B. bufo gargarizans and provide a theoretical basis for the sustainable utilization of the resources. Ultra-high performance liquid chromatography-Orbitrap-mass spectrometry(UHPLC-Orbitrap-MS) was employed to detect the synthesis sites of BDs in B. bufo gargarizans, and the results were verified by desorption electrospray ionization-mass spectrometry imaging(DESI-MSI) and homogenate incubation experiments. BDs in B. bufo gargarizans had the highest content in the liver and the highest concentration in the gallbladder, in addition to the parotid gland and skin, which suggested that the liver could synthesize BDs. The results of DESI-MSI also showed that BDs were mainly enriched in the liver rather than the immature parotid gland. The incubation experiment of liver homogenates demonstrated the liver of B. bufo gargarizans had the ability to synthesize BDs. This study showed that the liver was a major organ for the synthesis of BDs in B. bufo gargarizans during metamorphosis, development, and growth, which provided strong theoretical support for the biosynthesis of BDs and the sustainable utilization of B. bufo gargarizans resources.


Subject(s)
Bufanolides , Animals , Bufo bufo , Tissue Distribution , Bufonidae , Spectrometry, Mass, Electrospray Ionization
17.
Zhongguo Zhong Yao Za Zhi ; 49(10): 2783-2797, 2024 May.
Article in Zh | MEDLINE | ID: mdl-38812179

ABSTRACT

Dihuang Baoyuan Granules is a prescription endorsed by HU Tianbao, a renowned and elderly Chinese medicine practitioner from Beijing, and has demonstrated definite clinical efficacy. The composition of this prescription is intricate as it includes 7 distinct herbal medicines. This study aims to analyze the chemical composition of Dihuang Baoyuan Granules, evaluate its efficacy in the treatment of diabetes and analyze the distribution of the drug components in the plasma, liver, and kidney after administration. The findings will serve as a reference for future research on pharmacodynamic substances of this prescription. UHPLC-LTQ-Orbitrap MS was employed to analyze the main chemical components of Dihuang Baoyuan Granules. A Waters ACQUITY Premier HSS T3 column(2.1 mm×100 mm, 1.8 µm) was used for chromatographic separation with 0.1% formic acid(A)-acetonitrile(B) as the mobile phases in a gradient elution at a flow rate of 0.3 mL·min~(-1). Electrospray ionization(ESI) source was used to acquire data in positive and negative ion modes. Furthermore, a rat model of diabetes mellitus was established by feeding with a high-sugar high-fat diet, and injection with streptozocin at a dose of 35 mg·kg~(-1), and the modeled rats were then administrated with Dihuang Baoyuan Granules. The fasting blood glucose, hemoglobin A1c, and other relevant indicators were measured, and the substances present in the plasma, liver, and kidney were identified. By reference to quasi-molecular ions, MS/MS fragment ions, MS spectra of reference substances, and compound information in available reports, 191 components were identified in Dihuang Baoyuan Granules, including 29 alkaloids, 24 flavonoids, 22 organic acids, 16 amino acids, 12 terpenes, 11 steroid saponins, 9 sugars, 8 phenylethanoid glycosides, 8 nucleosides, 2 phenylpropanoids, and 49 others compounds. Eighty-three chemical components were identified in rat plasma, 109 in the liver, and 98 in the kidney. Component identification and characterization of Dihuang Baoyuan Granules in vitro and in vivo provide efficacy information and guidance for the basic research on the pharmacodynamic substances and further clinical application of this prescription.


Subject(s)
Drugs, Chinese Herbal , Rats, Sprague-Dawley , Drugs, Chinese Herbal/chemistry , Drugs, Chinese Herbal/pharmacokinetics , Chromatography, High Pressure Liquid/methods , Animals , Rats , Male , Humans , Liver/drug effects , Liver/chemistry , Liver/metabolism , Mass Spectrometry/methods , Kidney/drug effects , Kidney/chemistry , Diabetes Mellitus, Experimental/drug therapy , Diabetes Mellitus, Experimental/blood , Diabetes Mellitus/drug therapy
18.
Angew Chem Int Ed Engl ; : e202405615, 2024 Jun 10.
Article in English | MEDLINE | ID: mdl-38856204

ABSTRACT

The fabrication of materials that can switch between circularly polarized luminescence (CPL) signals is both essential and challenging. Here, two new halogen-bonded fluorescent molecular photoswitches, namely, HB-switch 1 and HB-switch 2, containing α-cyano-substituted diarylethene compounds with different end groups were developed. Upon exposure to specific UV or visible light wavelengths, they exhibited controllable and reversible Z/E photoisomerization. When these switches were integrated into blue-phase liquid crystals (BPLCs), the temperature range of BP significantly expanded. Notably, the BP system incorporating HB-switch 1 exclusively achieved reversible polarization inversion of CPL signals under specific UV/visible light irradiation and during cooling/heating. The photo/thermal dual-response behavior of the CPL signals can be attributed to the phase transition from a high-symmetry 3D BP I lattice to a low-symmetry 1D helical superstructure induced by the Z/E photoisomerization of HB-switch 1 and temperature changes. This study underscores the significance of employing halogen-bond assembly strategies to design materials with switchable CPL signals, opening new possibilities for CPL-active systems.

19.
Angew Chem Int Ed Engl ; 63(13): e202318887, 2024 Mar 22.
Article in English | MEDLINE | ID: mdl-38237082

ABSTRACT

Trifluoromethyl cationic carbyne (CF3 C+ :) possessing dual carbene-carbocation behavior emulated as trifluoromethyl metal-carbynoid (CF3 C+ =M) has not been explored yet, and its reaction characteristics are unknown. Herein, a novel α-diazotrifluoroethyl sulfonium salt was prepared and used in Rh-catalyzed three-component [2+1+2] cycloadditions for the first time with commercially available N-fused heteroarenes and nitriles, yielding a series of imidazo[1,5-a] N-heterocycles that are of interest in medicinal chemistry, in which the insertion of trifluoromethyl Rh-carbynoid (CF3 C+ =Rh) into C=N bonds of N-fused heteroarenes was involved. This strategy demonstrates synthetic applications in late-stage modification of pharmaceuticals, construction of CD3 -containing N-heterocycles, gram-scale experiments, and synthesis of phosphodiesterase 10A inhibitor analog. These highly valuable and modifiable imidazo[1,5-a] N-heterocycles exhibit good antitumor activity in vitro, thus demonstrating their potential applications in medicinal chemistry.

20.
Crit Rev Clin Lab Sci ; 60(4): 248-269, 2023 06.
Article in English | MEDLINE | ID: mdl-36647189

ABSTRACT

The discovery of cell-free fetal DNA (cffDNA) in maternal blood and the rapid development of massively parallel sequencing have revolutionized prenatal testing from invasive to noninvasive. Noninvasive prenatal screening (NIPS) based on cffDNA enables the detection of fetal trisomy through sequencing, comparison, and bioassays. Its accuracy is better than that of traditional screening methods, and it is the most advanced clinical application of high-throughput sequencing technologies. However, the existing sequencing methods are limited by high costs and complex sequencing procedures. These limitations restrict the availability of NIPS for pregnant women. Many amplification methods have been developed to overcome the limitations of sequencing methods. The rapid development of non-sequencing methods has not been accompanied by reviews to summarize them. In this review, we initially describe the detection principles for sequencing-based NIPS. We summarize the rapidly evolving amplification technologies, focusing on the need to reduce costs and simplify the procedures. To ensure that the testing systems are feasible and that the testing processes are reliable, we expand our vision to the clinic. We evaluate the clinical validity of NIPS in terms of sensitivity, specificity, and positive predictive value. Finally, we summarize the application guidelines and discuss the corresponding quality control methods for NIPS. In addition to cffDNA, extracellular vesicle DNA, RNA, protein/peptide, and fetal cells can also be detected as biomarkers of NIPS. With the development of prenatal testing, NIPS has become increasingly important. Notably, NIPS is a screening test instead of a diagnostic test. The testing methods and procedures used in the NIPS process require standardization.


Subject(s)
Noninvasive Prenatal Testing , Trisomy , Pregnancy , Female , Humans , Prenatal Diagnosis/methods , Aneuploidy , DNA
SELECTION OF CITATIONS
SEARCH DETAIL