Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
Childs Nerv Syst ; 33(6): 921-931, 2017 Jun.
Article in English | MEDLINE | ID: mdl-28382436

ABSTRACT

PURPOSE: We investigate the effects of environmental enrichment (EE) on morphological alterations in different brain structures of pup rats submitted to hydrocephalus condition. METHODS: Hydrocephalus was induced in 7-day-old pup rats by injection of 20% kaolin into the cisterna magna. Ventricular dilatation and magnetization transfer to analyze myelin were assessed by magnetic resonance. Hydrocephalic and control rats exposed to EE (n = 10 per group) were housed in cages with a tunnel, ramp, and colored plastic balls that would emit sound when touched. The walls of the housing were decorated with colored adhesive tape. Moreover, tactile and auditory stimulation was performed daily throughout the experiment. Hydrocephalic and control rats not exposed to EE (n = 10 per group) were allocated singly in standard cages. All animals were weighed daily and exposed to open-field conditions every 2 days until the end of the experiment when they were sacrificed and the brains removed for histology and immunohistochemistry. Solochrome cyanine staining was performed to assess the thickness of the corpus callosum. The glial fibrillary acidic protein method was used to evaluate reactive astrocytes, and the Ki67 method to assess cellular proliferation in the subventricular zone. RESULTS: The hydrocephalic animals exposed to EE showed better performance in Open Field tests (p < 0.05), while presenting lower weight gain. In addition, these animals showed better myelination as revealed by magnetization transfer (p < 0.05). Finally, the EE group showed a reduction in reactive astrocytes by means of glial fibrillary acidic protein immunostaining and preservation of the proliferation potential of progenitor cells. CONCLUSION: The results suggest that EE can protect the developing brain against damaging effects caused by hydrocephalus.


Subject(s)
Brain Injuries/diagnostic imaging , Brain Injuries/prevention & control , Environment , Hydrocephalus/diagnostic imaging , Age Factors , Animals , Animals, Newborn , Brain Injuries/pathology , Exploratory Behavior/physiology , Hydrocephalus/pathology , Male , Rats , Rats, Wistar
2.
Acupunct Med ; 36(6): 386-393, 2018 12.
Article in English | MEDLINE | ID: mdl-30143513

ABSTRACT

BACKGROUND: Acupuncture has been associated with improved cerebral circulation, analgesia, neuromodulatory function and neurogenesis. In particular, acupuncture at ST36 has been widely used in several central nervous system (CNS) disorders, including neurodegenerative diseases. However, its effects on hydrocephalus have not been studied. Our aim was to evaluate the effects of acupuncture at ST36 on behaviour, motor development and reactive astrogliosis in infantile rats with hydrocephalus. METHODS: Hydrocephalus was induced in sixteen 7-day-old pup rats by injection of 20% kaolin into the cisterna magna. One day after hydrocephalus induction, acupuncture was applied once daily (for 30 min) for a total of 21 days in eight randomly selected animals (HAc group) while the remaining eight remained untreated (H group). An additional eight healthy animals were included as controls (C group). All animals were weighed daily and, from the fifth day after hydrocephalus induction, underwent MRI to determine the ventricular ratio (VR). Rats were also exposed to modified open-field tests every 3 days until the end of the experiment. After 21 days all the animals were euthanased and their brains removed for histology and immunohistochemistry. RESULTS: Hydrocephalic rats showed an increase in VR when compared with control rats (P<0.01). In addition, these animals exhibited delayed weight gain, which was attenuated with acupuncture treatment. Hydrocephalic animals treated with acupuncture performed better in open field tests (P<0.05), and had a reduction in reactive astrocyte cell density in the corpus callosum and external capsule, as assessed by GFAP (glial fibrillary acidic protein) immunohistochemistry (P<0.05). CONCLUSIONS: These findings indicate that acupuncture at ST36 has a neuroprotective potential mediated, in part, by inhibition of astrogliosis.


Subject(s)
Acupuncture Points , Astrocytes , Gliosis/prevention & control , Hydrocephalus/therapy , Animals , Animals, Newborn , Astrocytes/metabolism , Brain/metabolism , Glial Fibrillary Acidic Protein/metabolism , Gliosis/diagnostic imaging , Hydrocephalus/chemically induced , Hydrocephalus/physiopathology , Kaolin , Magnetic Resonance Imaging , Male , Rats, Wistar
SELECTION OF CITATIONS
SEARCH DETAIL