Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 41
Filter
1.
Cell ; 174(2): 465-480.e22, 2018 07 12.
Article in English | MEDLINE | ID: mdl-30007418

ABSTRACT

Modern genetic approaches are powerful in providing access to diverse cell types in the brain and facilitating the study of their function. Here, we report a large set of driver and reporter transgenic mouse lines, including 23 new driver lines targeting a variety of cortical and subcortical cell populations and 26 new reporter lines expressing an array of molecular tools. In particular, we describe the TIGRE2.0 transgenic platform and introduce Cre-dependent reporter lines that enable optical physiology, optogenetics, and sparse labeling of genetically defined cell populations. TIGRE2.0 reporters broke the barrier in transgene expression level of single-copy targeted-insertion transgenesis in a wide range of neuronal types, along with additional advantage of a simplified breeding strategy compared to our first-generation TIGRE lines. These novel transgenic lines greatly expand the repertoire of high-precision genetic tools available to effectively identify, monitor, and manipulate distinct cell types in the mouse brain.


Subject(s)
Brain/metabolism , Gene Knockout Techniques/methods , Genes, Reporter , Animals , Brain/cytology , Calcium/metabolism , Cell Line , In Situ Hybridization, Fluorescence , Light , Mice , Mice, Transgenic , Microscopy, Fluorescence , Neurons/metabolism , Optogenetics , RNA, Untranslated/genetics , Transgenes/genetics
2.
Nature ; 598(7879): 151-158, 2021 10.
Article in English | MEDLINE | ID: mdl-34616067

ABSTRACT

The neocortex is disproportionately expanded in human compared with mouse1,2, both in its total volume relative to subcortical structures and in the proportion occupied by supragranular layers composed of neurons that selectively make connections within the neocortex and with other telencephalic structures. Single-cell transcriptomic analyses of human and mouse neocortex show an increased diversity of glutamatergic neuron types in supragranular layers in human neocortex and pronounced gradients as a function of cortical depth3. Here, to probe the functional and anatomical correlates of this transcriptomic diversity, we developed a robust platform combining patch clamp recording, biocytin staining and single-cell RNA-sequencing (Patch-seq) to examine neurosurgically resected human tissues. We demonstrate a strong correspondence between morphological, physiological and transcriptomic phenotypes of five human glutamatergic supragranular neuron types. These were enriched in but not restricted to layers, with one type varying continuously in all phenotypes across layers 2 and 3. The deep portion of layer 3 contained highly distinctive cell types, two of which express a neurofilament protein that labels long-range projection neurons in primates that are selectively depleted in Alzheimer's disease4,5. Together, these results demonstrate the explanatory power of transcriptomic cell-type classification, provide a structural underpinning for increased complexity of cortical function in humans, and implicate discrete transcriptomic neuron types as selectively vulnerable in disease.


Subject(s)
Glutamic Acid/metabolism , Neocortex/cytology , Neocortex/growth & development , Neurons/cytology , Neurons/metabolism , Alzheimer Disease , Animals , Cell Shape , Collagen/metabolism , Electrophysiology , Extracellular Matrix Proteins/metabolism , Female , Humans , Lysine/analogs & derivatives , Male , Mice , Neocortex/anatomy & histology , Neurons/classification , Patch-Clamp Techniques , Transcriptome
4.
Annu Rev Neurosci ; 35: 49-71, 2012.
Article in English | MEDLINE | ID: mdl-22540979

ABSTRACT

Functional studies on postsynaptic scaffolding proteins at excitatory synapses have revealed a plethora of important roles for synaptic structure and function. In addition, a convergence of recent in vivo functional evidence together with human genetics data strongly suggest that mutations in a variety of these postsynaptic scaffolding proteins may contribute to the etiology of diverse human psychiatric disorders such as schizophrenia, autism spectrum disorders, and obsessive-compulsive spectrum disorders. Here we review the most recent evidence for several key postsynaptic scaffolding protein families and explore how mouse genetics and human genetics have intersected to advance our knowledge concerning the contributions of these important players to complex brain function and dysfunction.


Subject(s)
Cytoskeletal Proteins/genetics , Cytoskeletal Proteins/physiology , Mental Disorders/genetics , Mental Disorders/physiopathology , Post-Synaptic Density/genetics , Post-Synaptic Density/physiology , Animals , Humans , Models, Neurological , Mutation/genetics , Mutation/physiology
5.
Nature ; 472(7344): 437-42, 2011 Apr 28.
Article in English | MEDLINE | ID: mdl-21423165

ABSTRACT

Autism spectrum disorders (ASDs) comprise a range of disorders that share a core of neurobehavioural deficits characterized by widespread abnormalities in social interactions, deficits in communication as well as restricted interests and repetitive behaviours. The neurological basis and circuitry mechanisms underlying these abnormal behaviours are poorly understood. SHANK3 is a postsynaptic protein, whose disruption at the genetic level is thought to be responsible for the development of 22q13 deletion syndrome (Phelan-McDermid syndrome) and other non-syndromic ASDs. Here we show that mice with Shank3 gene deletions exhibit self-injurious repetitive grooming and deficits in social interaction. Cellular, electrophysiological and biochemical analyses uncovered defects at striatal synapses and cortico-striatal circuits in Shank3 mutant mice. Our findings demonstrate a critical role for SHANK3 in the normal development of neuronal connectivity and establish causality between a disruption in the Shank3 gene and the genesis of autistic-like behaviours in mice.


Subject(s)
Autistic Disorder/genetics , Autistic Disorder/physiopathology , Carrier Proteins/genetics , Carrier Proteins/metabolism , Neostriatum/physiopathology , Animals , Compulsive Behavior/genetics , Female , Gene Deletion , Grooming , Male , Mice , Microfilament Proteins , Mutant Proteins/genetics , Mutant Proteins/metabolism , Neostriatum/pathology , Nerve Tissue Proteins , Neural Pathways , RNA, Messenger/genetics , RNA, Messenger/metabolism , Self-Injurious Behavior/genetics , Self-Injurious Behavior/physiopathology , Social Behavior , Synapses/metabolism , Synapses/pathology
6.
Nat Methods ; 8(9): 745-52, 2011 Sep.
Article in English | MEDLINE | ID: mdl-21985008

ABSTRACT

Optogenetic methods have emerged as powerful tools for dissecting neural circuit connectivity, function and dysfunction. We used a bacterial artificial chromosome (BAC) transgenic strategy to express the H134R variant of channelrhodopsin-2, ChR2(H134R), under the control of cell type­specific promoter elements. We performed an extensive functional characterization of the newly established VGAT-ChR2(H134R)-EYFP, ChAT-ChR2(H134R)-EYFP, Tph2-ChR2(H134R)-EYFP and Pvalb(H134R)-ChR2-EYFP BAC transgenic mouse lines and demonstrate the utility of these lines for precisely controlling action-potential firing of GABAergic, cholinergic, serotonergic and parvalbumin-expressing neuron subsets using blue light. This resource of cell type­specific ChR2(H134R) mouse lines will facilitate the precise mapping of neuronal connectivity and the dissection of the neural basis of behavior.


Subject(s)
Mice, Transgenic , Neurons/physiology , Action Potentials/physiology , Animals , Channelrhodopsins , Choline O-Acetyltransferase/genetics , Chromosomes, Artificial, Bacterial/genetics , Hippocampus/cytology , Hippocampus/physiology , Mice , Nerve Tissue/physiology , Tryptophan Hydroxylase/genetics , Vesicular Inhibitory Amino Acid Transport Proteins/genetics
7.
bioRxiv ; 2024 Jun 28.
Article in English | MEDLINE | ID: mdl-38915684

ABSTRACT

The classic output pathways of the basal ganglia are known as the direct-D1 and indirect-D2, or Go/No-Go, pathways. Balance of the activity in these canonical direct-indirect pathways is considered a core requirement for normal movement control, and their imbalance is a major etiologic factor in movement disorders including Parkinsons disease. We present evidence for a conceptually equivalent parallel system of direct-D1 and indirect-D2 pathways that arise from striatal projection neurons (SPNs) of the striosome compartment rather than from the matrix. These striosomal direct (S-D1) and indirect (S-D2) pathways, as a pair, target dopamine-containing neurons of the substantia nigra (SNpc) instead of the motor output nuclei of the basal ganglia. The novel anatomically and functionally distinct indirect-D2 striosomal pathway targets dopaminergic SNpc cells indirectly via a core region of the external pallidum (GPe). We demonstrate that these S-D1 and S-D2 pathways oppositely modulate striatal dopamine release in freely behaving mice under open-field conditions and oppositely modulate locomotor and other movements. These S-D1 and S-D2 pathways further exhibit different, time-dependent responses during performance of a probabilistic decision-making maze task and respond differently to rewarding and aversive stimuli. These contrasts depend on mediolateral and anteroposterior striatal locations of the SPNs as are the classic direct and indirect pathways. The effects of S-D1 and S-D2 stimulation on striatal dopamine release and voluntary locomotion are nearly opposite. The parallelism of the direct-indirect circuit design motifs of the striosomal S-D and S-D2 circuits and canonical matrix M-D1 and M-D2, and their contrasting behavioral effects, call for a major reformulation of the classic direct-indirect pathway model of basal ganglia function. Given that some striosomes receive limbic and association cortical inputs, the S-D1 and S-D2 circuits likely influence motivation for action and behavioral learning, complementing and possibly reorienting the motoric activities of the canonical matrix pathways. At a fundamental level, these findings suggest a unifying framework for aligning two sets of circuits that share the organizational motif of opponent D1 and D2 regulation, but that have different outputs and can even have opposite polarities in their targets and effects, albeit conditioned by striatal topography. Our findings further delineate a potentially therapeutically important set of pathways influencing dopamine, including a D2 receptor-linked S-D2 pathway likely unknowingly targeted by administration of many therapeutic drugs including those for Parkinsons disease. The novel parallel pathway model that we propose here could help to account for the normally integrated modulatory influence of the basal ganglia on motivation for actions as well as the actions themselves.

8.
bioRxiv ; 2023 Dec 15.
Article in English | MEDLINE | ID: mdl-38168178

ABSTRACT

Dravet syndrome (DS) is a devastating developmental epileptic encephalopathy marked by treatment-resistant seizures, developmental delay, intellectual disability, motor deficits, and a 10-20% rate of premature death. Most DS patients harbor loss-of-function mutations in one copy of SCN1A , which has been associated with inhibitory neuron dysfunction. Here we developed an interneuron-targeting AAV human SCN1A gene replacement therapy using cell class-specific enhancers. We generated a split-intein fusion form of SCN1A to circumvent AAV packaging limitations and deliver SCN1A via a dual vector approach using cell class-specific enhancers. These constructs produced full-length Na V 1.1 protein and functional sodium channels in HEK293 cells and in brain cells in vivo . After packaging these vectors into enhancer-AAVs and administering to mice, immunohistochemical analyses showed telencephalic GABAergic interneuron-specific and dose-dependent transgene biodistribution. These vectors conferred strong dose-dependent protection against postnatal mortality and seizures in two DS mouse models carrying independent loss-of-function alleles of Scn1a, at two independent research sites, supporting the robustness of this approach. No mortality or toxicity was observed in wild-type mice injected with single vectors expressing either the N-terminal or C-terminal halves of SCN1A , or the dual vector system targeting interneurons. In contrast, nonselective neuronal targeting of SCN1A conferred less rescue against mortality and presented substantial preweaning lethality. These findings demonstrate proof-of-concept that interneuron-specific AAV-mediated SCN1A gene replacement is sufficient for significant rescue in DS mouse models and suggest it could be an effective therapeutic approach for patients with DS.

9.
Nat Commun ; 14(1): 4188, 2023 07 13.
Article in English | MEDLINE | ID: mdl-37443107

ABSTRACT

GWAS have identified numerous genes associated with human cognition but their cell type expression profiles in the human brain are unknown. These genes overlap with human accelerated regions (HARs) implicated in human brain evolution and might act on the same biological processes. Here, we investigated whether these gene sets are expressed in adult human cortical neurons, and how their expression relates to neuronal function and structure. We find that these gene sets are preferentially expressed in L3 pyramidal neurons in middle temporal gyrus (MTG). Furthermore, neurons with higher expression had larger total dendritic length (TDL) and faster action potential (AP) kinetics, properties previously linked to intelligence. We identify a subset of genes associated with TDL or AP kinetics with predominantly synaptic functions and high abundance of HARs.


Subject(s)
Neurons , Pyramidal Cells , Adult , Humans , Neurons/metabolism , Pyramidal Cells/physiology , Cognition , Temporal Lobe , Brain
10.
bioRxiv ; 2023 Jan 13.
Article in English | MEDLINE | ID: mdl-36711773

ABSTRACT

Delivering genes to and across the brain vasculature efficiently and specifically across species remains a critical challenge for addressing neurological diseases. We have evolved adeno-associated virus (AAV9) capsids into vectors that transduce brain endothelial cells specifically and efficiently following systemic administration in wild-type mice with diverse genetic backgrounds and rats. These AAVs also exhibit superior transduction of the CNS across non-human primates (marmosets and rhesus macaques), and ex vivo human brain slices although the endothelial tropism is not conserved across species. The capsid modifications translate from AAV9 to other serotypes such as AAV1 and AAV-DJ, enabling serotype switching for sequential AAV administration in mice. We demonstrate that the endothelial specific mouse capsids can be used to genetically engineer the blood-brain barrier by transforming the mouse brain vasculature into a functional biofactory. Vasculature-secreted Hevin (a synaptogenic protein) rescued synaptic deficits in a mouse model.

11.
Nat Nanotechnol ; 18(10): 1241-1251, 2023 10.
Article in English | MEDLINE | ID: mdl-37430038

ABSTRACT

Crossing the blood-brain barrier in primates is a major obstacle for gene delivery to the brain. Adeno-associated viruses (AAVs) promise robust, non-invasive gene delivery from the bloodstream to the brain. However, unlike in rodents, few neurotropic AAVs efficiently cross the blood-brain barrier in non-human primates. Here we report on AAV.CAP-Mac, an engineered variant identified by screening in adult marmosets and newborn macaques, which has improved delivery efficiency in the brains of multiple non-human primate species: marmoset, rhesus macaque and green monkey. CAP-Mac is neuron biased in infant Old World primates, exhibits broad tropism in adult rhesus macaques and is vasculature biased in adult marmosets. We demonstrate applications of a single, intravenous dose of CAP-Mac to deliver functional GCaMP for ex vivo calcium imaging across multiple brain areas, or a cocktail of fluorescent reporters for Brainbow-like labelling throughout the macaque brain, circumventing the need for germline manipulations in Old World primates. As such, CAP-Mac is shown to have potential for non-invasive systemic gene transfer in the brains of non-human primates.


Subject(s)
Brain , Callithrix , Humans , Animals , Infant, Newborn , Chlorocebus aethiops , Macaca mulatta/genetics , Callithrix/genetics , Brain/physiology , Gene Transfer Techniques , Neurons , Genetic Vectors/genetics
12.
Elife ; 122023 05 30.
Article in English | MEDLINE | ID: mdl-37249212

ABSTRACT

Rodent studies have demonstrated that synaptic dynamics from excitatory to inhibitory neuron types are often dependent on the target cell type. However, these target cell-specific properties have not been well investigated in human cortex, where there are major technical challenges in reliably obtaining healthy tissue, conducting multiple patch-clamp recordings on inhibitory cell types, and identifying those cell types. Here, we take advantage of newly developed methods for human neurosurgical tissue analysis with multiple patch-clamp recordings, post-hoc fluorescent in situ hybridization (FISH), machine learning-based cell type classification and prospective GABAergic AAV-based labeling to investigate synaptic properties between pyramidal neurons and PVALB- vs. SST-positive interneurons. We find that there are robust molecular differences in synapse-associated genes between these neuron types, and that individual presynaptic pyramidal neurons evoke postsynaptic responses with heterogeneous synaptic dynamics in different postsynaptic cell types. Using molecular identification with FISH and classifiers based on transcriptomically identified PVALB neurons analyzed by Patch-seq, we find that PVALB neurons typically show depressing synaptic characteristics, whereas other interneuron types including SST-positive neurons show facilitating characteristics. Together, these data support the existence of target cell-specific synaptic properties in human cortex that are similar to rodent, thereby indicating evolutionary conservation of local circuit connectivity motifs from excitatory to inhibitory neurons and their synaptic dynamics.


Subject(s)
Neocortex , Humans , Neocortex/physiology , Synaptic Transmission/physiology , In Situ Hybridization, Fluorescence , Prospective Studies , Neurons/physiology , Pyramidal Cells/physiology , Synapses/physiology , Interneurons/physiology
13.
Nat Commun ; 14(1): 3345, 2023 06 08.
Article in English | MEDLINE | ID: mdl-37291094

ABSTRACT

Delivering genes to and across the brain vasculature efficiently and specifically across species remains a critical challenge for addressing neurological diseases. We have evolved adeno-associated virus (AAV9) capsids into vectors that transduce brain endothelial cells specifically and efficiently following systemic administration in wild-type mice with diverse genetic backgrounds, and in rats. These AAVs also exhibit superior transduction of the CNS across non-human primates (marmosets and rhesus macaques), and in ex vivo human brain slices, although the endothelial tropism is not conserved across species. The capsid modifications translate from AAV9 to other serotypes such as AAV1 and AAV-DJ, enabling serotype switching for sequential AAV administration in mice. We demonstrate that the endothelial-specific mouse capsids can be used to genetically engineer the blood-brain barrier by transforming the mouse brain vasculature into a functional biofactory. We apply this approach to Hevin knockout mice, where AAV-X1-mediated ectopic expression of the synaptogenic protein Sparcl1/Hevin in brain endothelial cells rescued synaptic deficits.


Subject(s)
Endothelial Cells , Rodentia , Mice , Rats , Animals , Endothelial Cells/metabolism , Rodentia/genetics , Macaca mulatta/genetics , Brain/metabolism , Tropism/genetics , Mice, Knockout , Dependovirus/metabolism , Genetic Vectors/genetics , Transduction, Genetic , Calcium-Binding Proteins/metabolism , Extracellular Matrix Proteins/genetics
14.
Pharmaceutics ; 14(7)2022 Jul 08.
Article in English | MEDLINE | ID: mdl-35890331

ABSTRACT

Non-human primates (NHPs) are precious resources for cutting-edge neuroscientific research, including large-scale viral vector-based experimentation such as optogenetics. We propose to improve surgical outcomes by enhancing the surgical preparation practices of convection-enhanced delivery (CED), which is an efficient viral vector infusion technique for large brains such as NHPs'. Here, we present both real-time and next-day MRI data of CED in the brains of ten NHPs, and we present a quantitative, inexpensive, and practical bench-side model of the in vivo CED data. Our bench-side model is composed of food coloring infused into a transparent agar phantom, and the spread of infusion is optically monitored over time. Our proposed method approximates CED infusions into the cortex, thalamus, medial temporal lobe, and caudate nucleus of NHPs, confirmed by MRI data acquired with either gadolinium-based or manganese-based contrast agents co-infused with optogenetic viral vectors. These methods and data serve to guide researchers and surgical team members in key surgical preparations for intracranial viral delivery using CED in NHPs, and thus improve expression targeting and efficacy and, as a result, reduce surgical risks.

15.
J Vis Exp ; (174)2021 08 04.
Article in English | MEDLINE | ID: mdl-34424236

ABSTRACT

Optogenetic techniques have revolutionized neuroscience research and are poised to do the same for neurological gene therapy. The clinical use of optogenetics, however, requires that safety and efficacy be demonstrated in animal models, ideally in non-human primates (NHPs), because of their neurological similarity to humans. The number of candidate vectors that are potentially useful for neuroscience and medicine is vast, and no high-throughput means to test these vectors yet exists. Thus, there is a need for techniques to make multiple spatially and volumetrically accurate injections of viral vectors into NHP brain that can be identified unambiguously through postmortem histology. Described herein is such a method. Injection cannulas are constructed from coupled polytetrafluoroethylene and stainless-steel tubes. These cannulas are autoclavable, disposable, and have low minimal-loading volumes, making them ideal for the injection of expensive, highly concentrated viral vector solutions. An inert, red-dyed mineral oil fills the dead space and forms a visible meniscus with the vector solution, allowing instantaneous and accurate measurement of injection rates and volumes. The oil is loaded into the rear of the cannula, reducing the risk of co-injection with the vector. Cannulas can be loaded in 10 min, and injections can be made in 20 min. This procedure is well suited for injections into awake or anesthetized animals. When used to deliver high-quality viral vectors, this procedure can produce robust expression of optogenetic proteins, allowing optical control of neural activity and behavior in NHPs.


Subject(s)
Optogenetics , Wakefulness , Animals , Brain , Dependovirus/genetics , Genetic Vectors/genetics , Primates
16.
Elife ; 102021 08 13.
Article in English | MEDLINE | ID: mdl-34387544

ABSTRACT

The Patch-seq approach is a powerful variation of the patch-clamp technique that allows for the combined electrophysiological, morphological, and transcriptomic characterization of individual neurons. To generate Patch-seq datasets at scale, we identified and refined key factors that contribute to the efficient collection of high-quality data. We developed patch-clamp electrophysiology software with analysis functions specifically designed to automate acquisition with online quality control. We recognized the importance of extracting the nucleus for transcriptomic success and maximizing membrane integrity during nucleus extraction for morphology success. The protocol is generalizable to different species and brain regions, as demonstrated by capturing multimodal data from human and macaque brain slices. The protocol, analysis and acquisition software are compiled at https://githubcom/AllenInstitute/patchseqtools. This resource can be used by individual labs to generate data across diverse mammalian species and that is compatible with large publicly available Patch-seq datasets.


Subject(s)
Electrophysiological Phenomena , Single-Cell Analysis/methods , Transcriptome , Animals , Brain , Humans , Macaca mulatta , Mice , Neurons/cytology , Neurons/physiology , Patch-Clamp Techniques , Software
17.
Neuron ; 109(18): 2914-2927.e5, 2021 09 15.
Article in English | MEDLINE | ID: mdl-34534454

ABSTRACT

In the neocortex, subcerebral axonal projections originate largely from layer 5 (L5) extratelencephalic-projecting (ET) neurons. The unique morpho-electric properties of these neurons have been mainly described in rodents, where retrograde tracers or transgenic lines can label them. Similar labeling strategies are infeasible in the human neocortex, rendering the translational relevance of findings in rodents unclear. We leveraged the recent discovery of a transcriptomically defined L5 ET neuron type to study the properties of human L5 ET neurons in neocortical brain slices derived from neurosurgeries. Patch-seq recordings, where transcriptome, physiology, and morphology were assayed from the same cell, revealed many conserved morpho-electric properties of human and rodent L5 ET neurons. Divergent properties were often subtler than differences between L5 cell types within these two species. These data suggest a conserved function of L5 ET neurons in the neocortical hierarchy but also highlight phenotypic divergence possibly related to functional specialization of human neocortex.


Subject(s)
Dendrites/physiology , Morphogenesis/physiology , Neocortex/cytology , Neocortex/physiology , Pyramidal Cells/physiology , Transcriptome/physiology , Action Potentials/physiology , Adult , Animals , Female , Humans , Macaca nemestrina , Male , Mice , Mice, Inbred C57BL , Mice, Transgenic , Middle Aged , Organ Culture Techniques , Patch-Clamp Techniques/methods
18.
Neuron ; 109(9): 1449-1464.e13, 2021 05 05.
Article in English | MEDLINE | ID: mdl-33789083

ABSTRACT

Rapid cell type identification by new genomic single-cell analysis methods has not been met with efficient experimental access to these cell types. To facilitate access to specific neural populations in mouse cortex, we collected chromatin accessibility data from individual cells and identified enhancers specific for cell subclasses and types. When cloned into recombinant adeno-associated viruses (AAVs) and delivered to the brain, these enhancers drive transgene expression in specific cortical cell subclasses. We extensively characterized several enhancer AAVs to show that they label different projection neuron subclasses as well as a homologous neuron subclass in human cortical slices. We also show how coupling enhancer viruses expressing recombinases to a newly generated transgenic mouse, Ai213, enables strong labeling of three different neuronal classes/subclasses in the brain of a single transgenic animal. This approach combines unprecedented flexibility with specificity for investigation of cell types in the mouse brain and beyond.


Subject(s)
Brain/cytology , Neurons/classification , Neurons/cytology , Single-Cell Analysis/methods , Animals , Datasets as Topic , Dependovirus , Humans , Mice , Mice, Transgenic
19.
Cell Rep ; 34(13): 108754, 2021 03 30.
Article in English | MEDLINE | ID: mdl-33789096

ABSTRACT

Viral genetic tools that target specific brain cell types could transform basic neuroscience and targeted gene therapy. Here, we use comparative open chromatin analysis to identify thousands of human-neocortical-subclass-specific putative enhancers from across the genome to control gene expression in adeno-associated virus (AAV) vectors. The cellular specificity of reporter expression from enhancer-AAVs is established by molecular profiling after systemic AAV delivery in mouse. Over 30% of enhancer-AAVs produce specific expression in the targeted subclass, including both excitatory and inhibitory subclasses. We present a collection of Parvalbumin (PVALB) enhancer-AAVs that show highly enriched expression not only in cortical PVALB cells but also in some subcortical PVALB populations. Five vectors maintain PVALB-enriched expression in primate neocortex. These results demonstrate how genome-wide open chromatin data mining and cross-species AAV validation can be used to create the next generation of non-species-restricted viral genetic tools.


Subject(s)
Enhancer Elements, Genetic , Gene Expression Regulation , Neocortex/metabolism , Animals , Chromatin/genetics , Chromatin/metabolism , Databases, Genetic , Dependovirus/genetics , Disease/genetics , Epigenesis, Genetic , Genetic Vectors/metabolism , Genome , Humans , Mice , Neurons/metabolism , Parvalbumins/metabolism , Primates , Species Specificity
20.
Neuron ; 107(1): 38-51.e8, 2020 07 08.
Article in English | MEDLINE | ID: mdl-32353253

ABSTRACT

Optogenetics is among the most widely employed techniques to manipulate neuronal activity. However, a major drawback is the need for invasive implantation of optical fibers. To develop a minimally invasive optogenetic method that overcomes this challenge, we engineered a new step-function opsin with ultra-high light sensitivity (SOUL). We show that SOUL can activate neurons located in deep mouse brain regions via transcranial optical stimulation and elicit behavioral changes in SOUL knock-in mice. Moreover, SOUL can be used to modulate neuronal spiking and induce oscillations reversibly in macaque cortex via optical stimulation from outside the dura. By enabling external light delivery, our new opsin offers a minimally invasive tool for manipulating neuronal activity in rodent and primate models with fewer limitations on the depth and size of target brain regions and may further facilitate the development of minimally invasive optogenetic tools for the treatment of neurological disorders.


Subject(s)
Opsins , Optogenetics/methods , Animals , Brain/physiology , Macaca , Mice , Models, Animal , Neurons/physiology
SELECTION OF CITATIONS
SEARCH DETAIL