Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 50
Filter
1.
Microb Pathog ; 190: 106608, 2024 May.
Article in English | MEDLINE | ID: mdl-38503396

ABSTRACT

The occurrence of bacterial resistance has been increasing, compromising the treatment of various infections. The high virulence of Staphylococcus aureus allows for the maintenance of the infectious process, causing many deaths and hospitalizations. The MepA and NorA efflux pumps are transporter proteins responsible for expelling antimicrobial agents such as fluoroquinolones from the bacterial cell. Coumarins are phenolic compounds that have been studied for their diverse biological actions, including against bacteria. A pharmacokinetic in silico characterization of compounds C10, C11, C13, and C14 was carried out according to the principles of Lipinski's Rule of Five, in addition to searching for similarity in ChemBL and subsequent search for publications in CAS SciFinder. All compounds were evaluated for their in vitro antibacterial and modulatory activity against standard and multidrug-resistant Gram-positive and Gram-negative strains. The effect of coumarins C9, C10, C11, C13, and C14 as efflux pump inhibitors in Staphylococcus aureus strains was evaluated using the microdilution method (MepA or NorA) and fluorimetry (NorA). The behavior of coumarins regarding the efflux pump was determined from their interaction properties with the membrane and coumarin-protein using molecular docking and molecular dynamics simulations. Only the isolated coumarin compound C13 showed antibacterial activity against standard strains of Staphylococcus aureus and Escherichia coli. However, the other tested coumarins showed modulatory capacity for fluoroquinolone and aminoglycoside antibacterials. Compounds C10, C13, and C14 were effective in reducing the MIC of both antibiotics for both multidrug-resistant strains, while C11 potentiated the effect of norfloxacin and gentamicin for Gram-positive and Gram-negative bacteria and only norfloxacin for Gram-negative. Only coumarin C14 produced synergistic effects when associated with ciprofloxacin in MepA-carrying strains. All tested coumarins have the ability to inhibit the NorA efflux pump present in Staphylococcus aureus, both in reducing the MIC and inducing increased ethidium bromide fluorescence emission in fluorimetry. The findings of this study offer an atomistic perspective on the potential of coumarins as active inhibitors of the NorA pump, highlighting their specific mode of action mainly targeting protein inhibition. In molecular docking, it was observed that coumarins are capable of interacting with various amino acid residues of the NorA pump. The simulation showed that coumarin C10 can cross the bilayer; however, the other coumarins interacted with the membrane but were unable to cross it. Coumarins demonstrated their potentiating role in the effect of norfloxacin through a dual mechanism: efflux pump inhibition through direct interaction with the protein (C9, C10, C11, and C13) and increased interaction with the membrane (C10 and C13). In the context of pharmacokinetic prediction studies, the studied structures have a suitable chemical profile for possible oral use. We suggest that coumarin derivatives may be an interesting alternative in the future for the treatment of resistant bacterial infections, with the possibility of a synergistic effect with other antibacterials, although further studies are needed to characterize their therapeutic effects and toxicity.


Subject(s)
Anti-Bacterial Agents , Bacterial Proteins , Coumarins , Microbial Sensitivity Tests , Molecular Docking Simulation , Molecular Dynamics Simulation , Multidrug Resistance-Associated Proteins , Staphylococcus aureus , Coumarins/pharmacology , Coumarins/chemistry , Coumarins/metabolism , Staphylococcus aureus/drug effects , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Bacterial Proteins/metabolism , Bacterial Proteins/antagonists & inhibitors , Multidrug Resistance-Associated Proteins/antagonists & inhibitors , Multidrug Resistance-Associated Proteins/metabolism , Drug Resistance, Multiple, Bacterial , Gram-Negative Bacteria/drug effects , Membrane Transport Proteins/metabolism
2.
J Basic Microbiol ; 64(2): e2300558, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38110852

ABSTRACT

Efflux pumps are proteins capable of expelling antibiotics from bacterial cells, have emerged as a major mechanism of bacterial resistance. In the ongoing pursuit to overcome and reduce bacterial resistance, novel substances are being explored as potential efflux pump inhibitors. Meldrum's acid, a synthetic molecule widely studied for its role in synthesizing bioactive compounds, holds promise in this regard. Therefore, the objective of this study is to evaluate the antibacterial activity of three derivatives of Meldrum's acid and assess their ability to inhibit efflux mechanisms, employing both in silico and in vitro approaches. The antibacterial activity of the derivatives was assessed using a broth microdilution testing method. Surprisingly, the derivatives did not exhibit direct antibacterial activity on their own. However, they displayed a significant effect in enhancing the efficacy of antibiotics, suggesting a potential role in potentiating their effects. Furthermore, fluorescence emission assays using ethidium bromide indicated that the derivatives could potentially block efflux pumps, as they exhibited fluorescence levels comparable to the positive control. To further investigate their inhibitory capacity, molecular docking studies were conducted in silico, revealing binding interactions similar to ciprofloxacin and carbonyl cyanide 3-chlorophenylhydrazone, known efflux pump inhibitors. These findings highlight the potential of Meldrum's acid derivatives as effective inhibitors of efflux pumps. By targeting these mechanisms, the derivatives offer a promising avenue to enhance the effectiveness of antibiotics and combat bacterial resistance. This study underscores the importance of exploring novel strategies in the fight against bacterial resistance and provides valuable insights into the potential of Meldrum's acid derivatives as efflux pump inhibitors. Further research and exploration in this field are warranted to fully exploit their therapeutic potential.


Subject(s)
Anti-Bacterial Agents , Bacterial Proteins , Molecular Docking Simulation , Bacterial Proteins/metabolism , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Dioxanes , Microbial Sensitivity Tests
3.
Molecules ; 28(4)2023 Feb 15.
Article in English | MEDLINE | ID: mdl-36838807

ABSTRACT

The bacterial species Staphylococcus aureus presents a variety of resistance mechanisms, among which the expression of ß-lactamases and efflux pumps stand out for providing a significant degree of resistance to clinically relevant antibiotics. The 1,8-naphthyridines are nitrogen heterocycles with a broad spectrum of biological activities and, as such, are promising research targets. However, the potential roles of these compounds on bacterial resistance management remain to be better investigated. Therefore, the present study evaluated the antibacterial activity of 1,8-naphthyridine sulfonamides, addressing their ability to act as inhibitors of ß-lactamases and efflux pump (QacA/B and QacC) against the strains SA-K4414 and SA-K4100 of S. aureus. All substances were prepared at an initial concentration of 1024 µg/mL, and their minimum inhibitory concentrations (MIC) were determined by the broth microdilution method. Subsequently, their effects on ß-lactamase- and efflux pump-mediated antibiotic resistance was evaluated from the reduction of the MIC of ethidium bromide (EtBr) and ß-lactam antibiotics, respectively. The 1,8-naphthyridines did not present direct antibacterial activity against the strains SA-K4414 and SA-K4100 of S. aureus. On the other hand, when associated with antibiotics against both strains, the compounds reduced the MIC of EtBr and ß-lactam antibiotics, suggesting that they may act by inhibiting ß-lactamases and efflux pumps such as QacC and QacA/B. However, further research is required to elucidate the molecular mechanisms underlying these observed effects.


Subject(s)
Anti-Bacterial Agents , Staphylococcus aureus , beta-Lactamase Inhibitors , Anti-Bacterial Agents/pharmacology , Bacterial Proteins/metabolism , beta-Lactamase Inhibitors/pharmacology , beta-Lactamases/metabolism , beta-Lactams/pharmacology , Microbial Sensitivity Tests , Multidrug Resistance-Associated Proteins/metabolism , Staphylococcus aureus/drug effects
4.
Molecules ; 28(22)2023 Nov 17.
Article in English | MEDLINE | ID: mdl-38005371

ABSTRACT

The efflux systems are considered important mechanisms of bacterial resistance due to their ability to extrude various antibiotics. Several naturally occurring compounds, such as sesquiterpenes, have demonstrated antibacterial activity and the ability to inhibit efflux pumps in resistant strains. Therefore, the objective of this research was to analyze the antibacterial and inhibitory activity of the efflux systems NorA, Tet(K), MsrA, and MepA by sesquiterpenes nerolidol, farnesol, and α-bisabolol, used either individually or in liposomal nanoformulation, against multi-resistant Staphylococcus aureus strains. The methodology consisted of in vitro testing of the ability of sesquiterpenes to reduce the Minimum Inhibitory Concentration (MIC) and enhance the action of antibiotics and ethidium bromide (EtBr) in broth microdilution assays. The following strains were used: S. aureus 1199B carrying the NorA efflux pump, resistant to norfloxacin; IS-58 strain carrying Tet(K), resistant to tetracyclines; RN4220 carrying MsrA, conferring resistance to erythromycin. For the EtBr fluorescence measurement test, K2068 carrying MepA was used. It was observed the individual sesquiterpenes exhibited better antibacterial activity as well as efflux pump inhibition. Farnesol showed the lowest MIC of 16.5 µg/mL against the S. aureus RN4220 strain. Isolated nerolidol stood out for reducing the MIC of EtBr to 5 µg/mL in the 1199B strain, yielding better results than the positive control CCCP, indicating strong evidence of NorA inhibition. The liposome formulations did not show promising results, except for liposome/farnesol, which reduced the MIC of EtBr against 1199B and RN4220. Further research is needed to evaluate the mechanisms of action involved in the inhibition of resistance mechanisms by the tested compounds.


Subject(s)
Methicillin-Resistant Staphylococcus aureus , Sesquiterpenes , Farnesol/pharmacology , Staphylococcus aureus/metabolism , Methicillin-Resistant Staphylococcus aureus/metabolism , Liposomes , Multidrug Resistance-Associated Proteins , Anti-Bacterial Agents/pharmacology , Sesquiterpenes/pharmacology , Ethidium/pharmacology , Microbial Sensitivity Tests , Bacterial Proteins/metabolism
5.
Molecules ; 27(7)2022 Mar 27.
Article in English | MEDLINE | ID: mdl-35408565

ABSTRACT

Weeds are an important source of natural products; with promising biological activity. This study investigated the anti-kinetoplastida potential (in vitro) to evaluate the cytotoxicity (in vitro) and antioxidant capacity of the essential oil of Rhaphiodon echinus (EORe), which is an infesting plant species. The essential oil was analyzed by GC/MS. The antioxidant capacity was evaluated by reduction of the DPPH radical and Fe3+ ion. The clone Trypanosoma cruzi CL-B5 was used to search for anti-epimastigote activity. Antileishmanial activity was determined using promastigotes of Leishmania braziliensis (MHOM/CW/88/UA301). NCTC 929 fibroblasts were used for the cytotoxicity test. The results showed that the main constituent of the essential oil was γ-elemene. No relevant effect was observed concerning the ability to reduce the DPPH radical; only at the concentration of 480 µg/mL did the essential oil demonstrate a high reduction of Fe3+ power. The oil was active against L. brasiliensis promastigotes; but not against the epimastigote form of T. cruzi. Cytotoxicity for mammalian cells was low at the active concentration capable of killing more than 70% of promastigote forms. The results revealed that the essential oil of R. echinus showed activity against L. brasiliensis; positioning itself as a promising agent for antileishmanial therapies.


Subject(s)
Antiprotozoal Agents , Chagas Disease , Lamiaceae , Leishmaniasis, Mucocutaneous , Oils, Volatile , Trypanosoma cruzi , Animals , Antioxidants/pharmacology , Antiprotozoal Agents/pharmacology , Chagas Disease/drug therapy , Mammals , Oils, Volatile/pharmacology
6.
J Bioenerg Biomembr ; 53(2): 149-156, 2021 04.
Article in English | MEDLINE | ID: mdl-33635515

ABSTRACT

The present study aimed to evaluate the in vitro efflux pump inhibitory capacity of hydroxyamines derived from lapachol and norlachol, where compounds 3, 4, and 5 were tested against the S. aureus strains: RN4220 carrying the pUL5054 plasmid; and IS-58, endowed with the PT181 plasmid. The substances were synthesized from 2-hydroxy-quinones, lapachol and nor-lapachol obtaining the corresponding 2-methoxylated derivatives via dimethyl sulfate alkylation in a basic medium, which then reacted chemoselectively with 2-ethanolamine and 3-propanolamine to form the corresponding amino alcohols. The antibacterial action of the substances was quantified by determining the Minimum Inhibitory Concentration (MIC), while a microdilution assay was carried out to ascertain efflux pump inhibition of Staphylococcus aureus strains carrying the MsrA macrolide and the TetK tetracycline efflux pumps with the substances at a sub-inhibitory concentration. The results were subjected to statistical analysis by an ANOVA test and Bonferroni post hoc test. The MIC from the substances exhibited a value ≥ 1024 µg/mL. However, a significant reduction (p < 0.0001) of the erythromycin, tetracycline and ethidium bromide MIC was demonstrated when these were in combination with the substances, with this effect being due to a supposed efflux pump inhibition. The tested substances demonstrated effectiveness at decreasing the MIC of erythromycin, tetracycline and ethidium bromide, potentially by inhibiting the MsrA macrolide and the TetK tetracycline efflux pumps present in the tested S. aureus strains.


Subject(s)
Anti-Bacterial Agents/therapeutic use , Naphthoquinones/therapeutic use , Staphylococcus aureus/drug effects , Anti-Bacterial Agents/pharmacology , Naphthoquinones/pharmacology
7.
J Bioenerg Biomembr ; 53(4): 489-498, 2021 08.
Article in English | MEDLINE | ID: mdl-34159523

ABSTRACT

Undue exposure to antimicrobials has led to the acquisition and development of sophisticated bacterial resistance mechanisms, such as efflux pumps, which are able to expel or reduce the intracellular concentration of various antibiotics, making them ineffective. Therefore, inhibiting this mechanism is a promising way to minimize the phenomenon of resistance in bacteria. In this sense, the present study sought to evaluate the activity of the Carvacrol (CAR) and Thymol (THY) terpenes as possible Efflux Pump Inhibitors (EPIs), by determining the Minimum Inhibitory Concentration (MIC) and the association of these compounds in subinhibitory concentrations with the antibiotic Norfloxacin and with Ethidium Bromide (EtBr) against strains SA-1199 (wild-type) and SA-1199B (overexpresses NorA) of Staphylococcus aureus. In order to verify the interaction of the terpenes with the NorA efflux protein, an in silico molecular modeling study was carried out. The assays used to obtain the MIC of CAR and THY were performed by broth microdilution, while the Efflux Pump inhibitory test was performed by the MIC modification method of the antibiotic Norfloxacin and EtBr. docking was performed using the Molegro Virtual Docker (MVD) program. The results of the study revealed that CAR and THY have moderate bacterial activity and are capable of reducing the MIC of Norfloxacin antibiotic and EtBr in strains of S. aureus carrying the NorA efflux pump. The docking results showed that these terpenes act as possible competitive NorA inhibitors and can be investigated as adjuvants in combined therapies aimed at reducing antibiotic resistance.


Subject(s)
Cymenes/therapeutic use , Multidrug Resistance-Associated Proteins/drug effects , Norfloxacin/therapeutic use , Staphylococcus aureus/drug effects , Thymol/therapeutic use , Cymenes/pharmacology , Norfloxacin/pharmacology , Thymol/pharmacology
8.
Curr Microbiol ; 78(9): 3388-3393, 2021 Sep.
Article in English | MEDLINE | ID: mdl-34268598

ABSTRACT

Since the discovery of the first antibiotics, bacteria have acquired a variety of resistance mechanisms, with efflux pump (EP) being the most prominent mechanism for intracellular targeting drugs. These proteins have become efficient mechanisms of resistance to antibiotics in species such as Staphylococcus aureus and, therefore, have been identified as promising therapeutic targets in antibacterial drug development. Accordingly, evidence suggests that monoterpenes can act as EP inhibitors and can be useful in circumventing bacterial resistance. This study aimed to evaluate the effectiveness of monoterpenes α-pinene and limonene as EP inhibitors against a strain of S. aureus expressing NorA protein. The minimum inhibitory concentration (MIC) against the 1199B strain of S. aureus, which carries genes encoding efflux proteins associated with antibiotic resistance to norfloxacin, was assessed through the broth microdilution method. The results obtained served as a subsidy for the analysis of the NorA pump inhibition with norfloxacin and ethidium bromide. Docking techniques, in silico, were used to evaluate the interaction of monoterpenes with NorA. Both monoterpenes showed no clinically effective antibacterial activity. Nevertheless, these compounds were found to decrease the MICs of ethidium bromide and norfloxacin indicating EP inhibition, which was confirmed by molecular docking analyses. In conclusion, α-pinene and limonene showed promising antibiotic-enhancing properties in S. aureus 1199B strain, indicating that monoterpenes can be used in targeted drug development to combat antibiotic resistance associated with EP expression.


Subject(s)
Multidrug Resistance-Associated Proteins , Staphylococcus aureus , Anti-Bacterial Agents/pharmacology , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Bicyclic Monoterpenes , Limonene , Microbial Sensitivity Tests , Molecular Docking Simulation , Multidrug Resistance-Associated Proteins/genetics , Staphylococcus aureus/metabolism
9.
Microb Pathog ; 147: 104268, 2020 Oct.
Article in English | MEDLINE | ID: mdl-32574783

ABSTRACT

Naphthyridines represent a class of heterocyclic compounds formed by two condensed aromatic rings. This study aimed to evaluate the antibacterial activity and in vitro inhibition of efflux resistance mechanisms of a series of 1,8-naphthyridine sulfonamides against strains carrying Tet(K) and MsrA efflux pumps. The efflux pump inhibitory capacity was evaluated by analyzing synergistic effects between 1,8-naphthyridine sulfonamides and standard antibiotics, as well as ethidium bromide. The following 1,8-naphthyridines were used: 4-methyl-N-(5-chloro-1,8-naphthyridin-2-yl)-benzenesulfonamide (Naph 1); 2,5-Dichloro-N-(5-chloro-1,8-naphthyridin-2-yl)-benzenesulfonamide (Naph 2); 2,3,4-trifluoro-N-(5-chloro-1,8-naphthyridin-2-yl)benzenesulfonamide (Naph 7); 3-trifluoromethyl-N-(5-chloro-1,8-naphthyridin-2-yl)-benzenesulfonamide (Naph 9). The 1,8-naphthyridine sulfonamide derivatives possessed a potential Tet(K) and MsrA efflux pump inhibitory action.


Subject(s)
Anti-Bacterial Agents , Staphylococcus aureus , Anti-Bacterial Agents/pharmacology , Bacterial Proteins/genetics , Ethidium , Microbial Sensitivity Tests , Naphthyridines/pharmacology , Sulfonamides/pharmacology
10.
Bioorg Med Chem ; 27(17): 3797-3804, 2019 09 01.
Article in English | MEDLINE | ID: mdl-31320212

ABSTRACT

Thiazol and thiazolidinedione derivatives are known in the literature for presenting several biological activities, such as anti-diabetic, anti-inflammatory, antiparasitic, antifungal and antimicrobial activity. With this in mind, this study reports on the synthesis and antibacterial activity of thiazole (NJ) and thiazolidinedione (NW) derivatives, as well as their effects in association with norfloxacin, against NorA efflux pumps in the Staphylococcus aureus 1199B (SA-1199B) strain. Among the 14 compounds evaluated, 9 were found to potentiate norfloxacin activity, with 4 compounds from the NJ series promoting a threefold norfloxacin MIC reduction. Molecular docking assays were used to confirm the binding mode of most active compounds. In the in silico study, the efficiency of the interaction of NJ series compounds with the NorA pump were evaluated. Derivatives from both series did not show considerable intrinsic antibacterial activity (MIC > 1024 µg/mL) against any of the tested strains. However, the NJ16 and NJ17 compounds, when associated with norfloxacin, reduced the MIC of this drug threefold and inhibited NorA pumps in the 1199B strain. Moreover, some NW (05, 10, 18, 19 and 21) and NJ compounds (16, 17, 18 and 20) presented low to moderate cytotoxicity against normal cells. Molecular docking studies supported the potent in vitro inhibitory activity of NJ16 and NJ17, which showed NJ16 and NJ17 possessed more favorable binding energies of -9.03 Kcal/mol and -9.34 Kcal/mol, respectively. In addition, NJ16 showed different types of interactions involved in complex stabilization. In conclusion, NJ16 and NJ17, in combination with norfloxacin, were able to completely restore the antibacterial activity of norfloxacin against S. aureus SA-1199B, the norA-overexpressing strain, with low cytotoxicity in normal cells.


Subject(s)
Anti-Bacterial Agents/pharmacology , Bacterial Proteins/antagonists & inhibitors , Multidrug Resistance-Associated Proteins/antagonists & inhibitors , Norfloxacin/pharmacology , Staphylococcus aureus/drug effects , Thiazoles/pharmacology , Animals , Anti-Bacterial Agents/chemical synthesis , Anti-Bacterial Agents/chemistry , Bacterial Proteins/metabolism , Cell Survival/drug effects , Cells, Cultured , Dose-Response Relationship, Drug , Mice , Microbial Sensitivity Tests , Models, Molecular , Molecular Structure , Multidrug Resistance-Associated Proteins/metabolism , Norfloxacin/chemistry , Staphylococcus aureus/metabolism , Structure-Activity Relationship , Thiazoles/chemical synthesis , Thiazoles/chemistry
11.
Microb Pathog ; 115: 175-178, 2018 Feb.
Article in English | MEDLINE | ID: mdl-29275130

ABSTRACT

Diseases caused by bacteria are today one of the great problems of present time. Access to over-the-counter medication, the indiscriminate use of antibacterials and high rates of hospitalization have contributed to the increase in cases. This picture has led to the search for new alternative drugs. Thus, secondary metabolites have been reported as a possible treatment option, being evidenced in many researches to ascertain their combination with existing drugs. This research aimed to evaluate the antibacterial effect and the antibiotic activity modifying action of the catechin compound against Pseudomonas aeruginosa, Escherichia coli and Staphylococcus aureus multiresistant strains. The determination of the Minimum Inhibitory Concentration (MIC) and the evaluation of the antimicrobial and potentiating effect were performed by broth microdilution. The MIC obtained forcatechin against all the used strains was indicated as not clinically relevant. The combination of catechin and antibacterial drugs, both Gram-negative and Gram-positive, was synergistic and antagonistic in some drugs. Therefore, phenolic compounds can assist in the fight against infections caused by bacteria.


Subject(s)
Anti-Bacterial Agents/pharmacology , Catechin/pharmacology , Escherichia coli/drug effects , Pseudomonas aeruginosa/drug effects , Staphylococcus aureus/drug effects , Drug Combinations , Drug Synergism , Humans , Microbial Sensitivity Tests
12.
Microb Pathog ; 124: 163-169, 2018 Nov.
Article in English | MEDLINE | ID: mdl-30142465

ABSTRACT

In the Northeast of Brazil, ethnoveterinary studies have shown that the body fat from Gallus gallus domesticus and Meleagris gallopavo are used for diseases that affect domestic animals. The objective of this study was to identify the chemical composition and to evaluate the antibacterial activity of the Gallus gallus domesticus (OFGG) and Meleagris gallopavo (OFMG) fixed oils in isolation and in association with antibiotics. The OFGG and OFMG from the poultry's body fat were extracted using hexane as a solvent in Soxhlet. Their composition was indirectly determined using fatty acid methyl esters. The OFGG and OFMG antibacterial and modulatory activities against standard and multi-resistant bacterial strains were performed through the broth microdilution test. In the OFGG chemical composition, 4 constituents were identified. The saturated fatty acid (AGS) and unsaturated fatty acid (AGI) percentages were 35.1% and 64.91% respectively, with linoleic acid being the major component. In the OFMG, 3 constituents were identified. The AGS percentage was 27.71% and 72.29% for AGI, with oleic acid as the most abundant component. The oils did not present antibacterial activity when tested in isolation, presenting Minimum Inhibitory Concentrations (MICs) > 512 µg/mL. However, when associated with antibiotics the OFGG showed synergistic activity with the antibiotics Amikacin, Amoxicillin, Norfloxacin and Oxytetracycline, while the OFMG promoted a synergistic action with the antibiotics Amikacin, Amoxicillin and Norfloxacin.


Subject(s)
Adipose Tissue/chemistry , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacology , Fatty Acids/chemistry , Amikacin/chemistry , Amikacin/pharmacology , Amoxicillin/chemistry , Amoxicillin/pharmacology , Animals , Animals, Domestic , Bacteria/drug effects , Chickens , Microbial Sensitivity Tests , Norfloxacin/chemistry , Norfloxacin/pharmacology , Poultry Diseases/microbiology , Turkeys
13.
Chem Biol Interact ; 393: 110945, 2024 Apr 25.
Article in English | MEDLINE | ID: mdl-38460934

ABSTRACT

This study aimed to evaluate the antibacterial and inhibitory action of NorA, Tet(K), MsrA and MepA efflux pumps in S. aureus strains using the sesquiterpenes named trans-caryophyllene and caryophyllene oxide, both isolated and encapsulated in liposomes. The antibacterial and inhibitory action of these efflux pumps was evaluated through the serial microdilution test in 96-well microplates. Each sesquiterpene and liposome/sesquiterpene was combined with antibiotics and ethidium bromide (EtBr). The antibiotics named norfloxacin, tetracycline and erythromycin were used. The 1199 B, IS-58, RN4220 and K2068 S. aureus strains carrying NorA, Tet(K), MsrA and MepA, respectively, were tested. In the fluorescence measurement test, K2068 S. aureus was incubated with the sesquiterpenes and EtBr, and the fluorescence emission by EtBr was measured. The tested substances did not show direct antibacterial activity, with MIC >1024 µg/mL. Nonetheless, the isolated trans-caryophyllene and caryophyllene oxide reduced the MIC of antibiotics and EtBr, indicating inhibition of NorA, Tet(K) and MsrA. In the fluorescence test, these same sesquiterpenes increased fluorescence emission, indicating inhibition of MepA. Therefore, the sesquiterpenes named trans-caryophyllene and caryophyllene oxide did not show direct antibacterial action; however, in their isolated form, they showed possible inhibitory action on NorA, Tet(K), MsrA and MepA efflux pumps. They may also act in antibiotic potentiation. Further studies are needed to identify the mechanisms involved in antibiotic potentiation and efflux pump inhibitory action.


Subject(s)
Liposomes , Staphylococcus aureus , Staphylococcus aureus/metabolism , Microbial Sensitivity Tests , Anti-Bacterial Agents/pharmacology , Polycyclic Sesquiterpenes , Ethidium , Bacterial Proteins/metabolism , Multidrug Resistance-Associated Proteins
14.
Fundam Clin Pharmacol ; 38(1): 84-98, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37649138

ABSTRACT

BACKGROUND: Thiadiazines are heterocyclic compounds that contain two nitrogen atoms and one sulfur atom in their structure. These synthetic molecules have several relevant pharmacological activities, such as antifungal, antibacterial, and antiparasitic. OBJECTIVES: The present study aimed to evaluate the possible in vitro and in silico interactions of compounds derived from thiadiazines. METHODS: The compounds were initially synthesized, purified, and confirmed through HPLC methodology. Multi-drug resistant bacterial strains of Staphylococcus aureus 10 and Pseudomonas aeruginosa 24 were used to evaluate the direct and modifying antibiotic activity of thiadiazine derivatives. ADMET assays (absorption, distribution, metabolism, excretion, and toxicity) were conducted, which evaluated the influence of the compounds against thousands of macromolecules considered as bioactive targets. RESULTS: There were modifications in the chemical synthesis in carbon 4 or 3 in one of the aromatic rings of the structure where different ions were added, ensuring a variability of products. It was possible to observe results that indicate the possibility of these compounds acting through the cyclooxygenase 2 mechanism, which, in addition to being involved in inflammatory responses, also acts by helping sodium reabsorption. The amine group present in thiadiazine analogs confers hydrophilic characteristics to the substances, but this primary characteristic has been altered due to alterations and insertions of other ligands. The characteristics of the analogs generally allow easy intestinal absorption, reduce possible hepatic toxic effects, and enable possible neurological and anti-inflammatory action. The antibacterial activity tests showed a slight direct action, mainly of the IJ23 analog. Some compounds were able to modify the action of the antibiotics gentamicin and norfloxacin against multi-drug resistant strains, indicating a possible synergistic action. CONCLUSIONS: Among all the results obtained in the study, the relevance of thiadiazine analogs as possible coadjuvant drugs in the antibacterial, anti-inflammatory, and neurological action with low toxicity is clear. Need for further studies to verify these effects in living organisms is not ruled out.


Subject(s)
Anti-Infective Agents , Thiadiazines , Anti-Bacterial Agents/pharmacology , Thiadiazines/pharmacology , Thiadiazines/chemistry , Norfloxacin/pharmacology , Anti-Inflammatory Agents , Microbial Sensitivity Tests
15.
Life (Basel) ; 13(2)2023 Jan 27.
Article in English | MEDLINE | ID: mdl-36836697

ABSTRACT

Anthropogenic pollution by trace metals in aquatic environments in semiarid zones is a critical area of investigation. The objective of this study was to investigate the concentration and spatial distribution of trace metals in surface sediments in the Rosário reservoir, which is affected by the intensive aquaculture of Tilápia-do-Nilo (Oreochromis niloticus). Sediment samples were collected in three different areas, postculture (PCTV), cultivation (CTV) and control (CTRL) in the dry season in 2019. The granulometric composition, organic matter and concentrations of Fe, Mn, Zn, Cu, Cr, Cd, Pb and Ni metals were determined. Multivariate statistics were used. Geochemical and ecotoxicological indices and a comparison with sediment quality guidelines (SQG) were used. The sediment was characterized by silty clay loam with an average organic matter of 18.76 ± 4.27. The analytical merit figures demonstrated accuracy (metal recoveries in certified standards) between 89 to 99% and high precision (RSD < 5%). The concentration ranges for the metals were Fe: 0.11-0.85 (%), Mn: 14.46-86.91, Zn: 2.6-220.56, Cu: 26.89-98.75, Cr: 60.18-76.06, Cd: 0.38-0.59, Pb: 18.13-43.13, and Ni: 34.4-46.75, all in (mg/kg-1). The highest concentration values were found in the CTV areas (Fe: 40 ± 0.22, Mn: 66.48 ± 19.11, Zn: 114.83 ± 59.75 and Cr: 70.85 ± 2.62) and PCTV (Cd: 0.53 ± 0.04, Cu: 71.83 ± 21.20, Pb: 33.71 ± 4.34 and Ni: 44.60 ± 1.79). Pearson's correlation, hierarchical cluster analysis and principal component analysis confirmed the influence of fish farming on metals. Only Ni presented concentration values higher than the reference value established in the SQG. Thus, considering the probable geochemical and ecotoxicological effects, they comprise the two lowest levels of impact.

16.
Chem Biol Interact ; 386: 110751, 2023 Dec 01.
Article in English | MEDLINE | ID: mdl-37821044

ABSTRACT

Multidrug resistance is a significant health problem worldwide, with increasing mortality rates, especially in the last few years. In this context, a consistent effort has been made to discover new antibacterial agents, and evidence points to natural products as the most promising source of bioactive compounds. This research aimed to characterize the antibacterial effect of the essential oil of Etlingera elatior (EOEE) and its major constituents against efflux pump-carrying Staphylococcus aureus strains. The essential oil was extracted from fresh inflorescences by hydrodistillation. Chemical analysis was performed using gas chromatography coupled to mass spectrometry (GC-MS) and gas chromatography equipped with a flame ionization detector (GC-FID). The strains RN-4220, 1199B, IS-58, and 1199 of S. aureus were used to evaluate the antibacterial activity and the inhibition of efflux pumps. A total of 23 compounds were identified, including dodecanal and 1-dodecanol as major compounds. EOEE and dodecanal showed weak activity against the strains, while 1-dodecanol inhibited bacterial growth at low concentrations, indicating strong antibacterial activity. In addition, this compound potentiated the activity of norfloxacin against S. aureus 1199. In conclusion, 1-dodecanol was identified as the most effective compound of EOEE, showing significant potential to be used in antibacterial drug development.


Subject(s)
Oils, Volatile , Staphylococcus aureus , Gas Chromatography-Mass Spectrometry , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Oils, Volatile/pharmacology , Oils, Volatile/chemistry , Dodecanol/pharmacology
17.
Pharmaceutics ; 15(10)2023 Sep 28.
Article in English | MEDLINE | ID: mdl-37896161

ABSTRACT

Valencene and nootkatone are aromatic sesquiterpenes with known biological activities, such as antimicrobial, antioxidant, anti-inflammatory, and antitumor. Given the evidence that encapsulation into nanosystems, such as liposomes, could improve the properties of several compounds, the present study aimed to evaluate the activity of these sesquiterpenes in their isolated state or in liposomal formulations against strains of Staphylococcus aureus carrying efflux pumps. The broth microdilution method evaluated the antibiotic-enhancing activity associated with antibiotics and ethidium bromide (EtBr). The minimum inhibitory concentration was assessed in strains of S. aureus 1199B, IS-58, and RN4220, which carry the efflux proteins NorA, Tet(K), and MsrA. In tests with strain 1199B, valencene reduced the MIC of norfloxacin and EtBr by 50%, while the liposomal formulation of this compound did not show a significant effect. Regarding the strain IS-58, valencene, and its nanoformulation reduced norfloxacin MIC by 60.3% and 50%, respectively. In the non-liposomal form, the sesquiterpene reduced the MIC of EtBr by 90%. Against the RN4220 strain, valencene reduced the MIC of the antibiotic and EtBr by 99% and 93.7%, respectively. Nootkatone and its nanoformulation showed significant activity against the 1199B strain, reducing the EtBr MIC by 21.9%. Against the IS-58 strain, isolated nootkatone reduced the EtBr MIC by 20%. The results indicate that valencene and nootkatone potentiate the action of antibiotics and efflux inhibitors in strains carrying NorA, Tet(K), and MsrA proteins, which suggests that these sesquiterpenes act as efflux pump inhibitors in S. aureus. Therefore, further studies are needed to assess the impact of incorporation into liposomes on the activity of these compounds in vivo.

18.
Fish Shellfish Immunol Rep ; 5: 100108, 2023 Dec 15.
Article in English | MEDLINE | ID: mdl-37409181

ABSTRACT

Ziziphus joazeiro Mart. is an endemic plant of the Caatinga that presents a great socioeconomic importance for the Northeast and Semiarid Region of Brazil. In view of this, this study aimed to evaluate the antibacterial activity and anxiolytic-like effects of Ziziphus joazeiro Mart leaves in adult zebrafish (Danio rerio). The characterization of the main classes of metabolites was performed through chemical reactions. The antibacterial and antibiotic potentiating activity was evaluated by broth microdilution assays. The 96 h acute toxicity, open field test and anxiety models test was evaluated in vivo on adult zebrafish. The results obtained in the phytochemical prospection evidenced the presence of flobabenic tannins, leucoanthocyanidins, flavonois, flavonones, catechins, alkaloids, steroids, and triterpenoids. EEFZJ did not show antibacterial activity for all microorganism tested (MIC ≥ 1024 µg/mL), but reduced the concentration required for bacterial growth inhibition in combination with gentamicin and norfloxacin against multidrug-resistant strains of S. aureus (SA10) and E. coli (EC06), exhibiting synergistic effect with these antibiotics (p<0.0001). In the tests in vivo, EEFZJ was found to be nontoxic, performing reduced locomotor activity and demonstrated an anxiolytic-like effect in adult zebrafish via GABAergic and Serotoninergic systems (5-HT1, 5-HT2A/2C and 5-HT3A/3B).

19.
Curr Pharm Des ; 29(5): 323-355, 2023.
Article in English | MEDLINE | ID: mdl-36515045

ABSTRACT

Antibiotic resistance can be characterized, in biochemical terms, as an antibiotic's inability to reach its bacterial target at a concentration that was previously effective. Microbial resistance to different agents can be intrinsic or acquired. Intrinsic resistance occurs due to inherent functional or structural characteristics of the bacteria, such as antibiotic-inactivating enzymes, nonspecific efflux pumps, and permeability barriers. On the other hand, bacteria can acquire resistance mechanisms via horizontal gene transfer in mobile genetic elements such as plasmids. Acquired resistance mechanisms include another category of efflux pumps with more specific substrates, which are plasmid-encoded. Efflux pumps are considered one of the main mechanisms of bacterial resistance to antibiotics and biocides, presenting themselves as integral membrane transporters. They are essential in both bacterial physiology and defense and are responsible for exporting structurally diverse substrates, falling into the following main families: ATP-binding cassette (ABC), multidrug and toxic compound extrusion (MATE), major facilitator superfamily (MFS), small multidrug resistance (SMR) and resistance-nodulation-cell division (RND). The Efflux pumps NorA and Tet(K) of the MFS family, MepA of the MATE family, and MsrA of the ABC family are some examples of specific efflux pumps that act in the extrusion of antibiotics. In this review, we address bacterial efflux pump inhibitors (EPIs), including 1,8-naphthyridine sulfonamide derivatives, given the pre-existing knowledge about the chemical characteristics that favor their biological activity. The modification and emergence of resistance to new EPIs justify further research on this theme, aiming to develop efficient compounds for clinical use.


Subject(s)
Bacterial Proteins , Staphylococcus aureus , Humans , Bacterial Proteins/genetics , Bacterial Proteins/chemistry , Sulfonamides/pharmacology , Bacteria , Anti-Bacterial Agents/pharmacology , Sulfanilamide/pharmacology , Naphthyridines/pharmacology , Microbial Sensitivity Tests
20.
Plants (Basel) ; 12(8)2023 Apr 08.
Article in English | MEDLINE | ID: mdl-37111810

ABSTRACT

Escherichia coli, Pseudomonas aeruginosa, and Staphylococcus aureus are the primary bacteria that cause clinical infections, such as urinary and intestinal infections, pneumonia, endocarditis, and sepsis. Bacterial resistance is an innate natural occurrence in microorganisms, resulting from mutations or the lateral exchange of genetic material. This serves as evidence for the association between drug consumption and pathogen resistance. Evidence has demonstrated that the association between conventional antibiotics and natural products is a promising pharmacological strategy to overcome resistance mechanisms. Considering the large body of research demonstrating the significant antimicrobial activities of Schinus terebinthifolius Raddi, the present study aimed to evaluate the chemical composition and antibiotic-enhancing effects of Schinus terebinthifolius Raddi essential oil (STEO) against the standard and multidrug-resistant strains of Escherichia coli, Pseudomonas aeruginosa, and Staphylococcus aureus. The STEO was extracted by hydrodistillation using a Clevenger-type vacuum rotary evaporator. The Minimum Inhibitory Concentration (MIC) of the STEO was assessed by the microdilution method to evaluate the antibacterial activity. The antibiotic-enhancing activity of the essential oil was assessed by determining the MIC of antibiotics in the presence of a sub-inhibitory concentration (MIC/8) of the natural product. The GC-MS analysis revealed alpha-pinene (24.3%), gamma-muurolene (16.6%), and myrcene (13.7%) as major constituents of the STEO. The STEO potentiated the enhanced antibacterial activity of norfloxacin and gentamicin against all the strains and increased the action of penicillin against the Gram-negative strains. Therefore, it is concluded that although the STEO does not exhibit clinically effective antibacterial activity, its association with conventional antibiotics results in enhanced antibiotic activity.

SELECTION OF CITATIONS
SEARCH DETAIL