Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 53
Filter
Add more filters

Publication year range
2.
Hum Brain Mapp ; 45(2): e26570, 2024 Feb 01.
Article in English | MEDLINE | ID: mdl-38339908

ABSTRACT

Head motion correction is particularly challenging in diffusion-weighted MRI (dMRI) scans due to the dramatic changes in image contrast at different gradient strengths and directions. Head motion correction is typically performed using a Gaussian Process model implemented in FSL's Eddy. Recently, the 3dSHORE-based SHORELine method was introduced that does not require shell-based acquisitions, but it has not been previously benchmarked. Here we perform a comprehensive evaluation of both methods on realistic simulations of a software fiber phantom that provides known ground-truth head motion. We demonstrate that both methods perform remarkably well, but that performance can be impacted by sampling scheme and the extent of head motion and the denoising strategy applied before head motion correction. Furthermore, we find Eddy benefits from denoising the data first with MP-PCA. In sum, we provide the most extensive known benchmarking of dMRI head motion correction, together with extensive simulation data and a reproducible workflow. PRACTITIONER POINTS: Both Eddy and SHORELine head motion correction methods performed quite well on a large variety of simulated data. Denoising with MP-PCA can improve head motion correction performance when Eddy is used. SHORELine effectively corrects motion in non-shelled diffusion spectrum imaging data.


Subject(s)
Artifacts , Magnetic Resonance Imaging , Humans , Diffusion Magnetic Resonance Imaging/methods , Motion , Computer Simulation , Brain/diagnostic imaging , Algorithms , Image Processing, Computer-Assisted/methods
3.
Hum Brain Mapp ; 45(5): e26580, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38520359

ABSTRACT

Diffusion Spectrum Imaging (DSI) using dense Cartesian sampling of q-space has been shown to provide important advantages for modeling complex white matter architecture. However, its adoption has been limited by the lengthy acquisition time required. Sparser sampling of q-space combined with compressed sensing (CS) reconstruction techniques has been proposed as a way to reduce the scan time of DSI acquisitions. However prior studies have mainly evaluated CS-DSI in post-mortem or non-human data. At present, the capacity for CS-DSI to provide accurate and reliable measures of white matter anatomy and microstructure in the living human brain remains unclear. We evaluated the accuracy and inter-scan reliability of 6 different CS-DSI schemes that provided up to 80% reductions in scan time compared to a full DSI scheme. We capitalized on a dataset of 26 participants who were scanned over eight independent sessions using a full DSI scheme. From this full DSI scheme, we subsampled images to create a range of CS-DSI images. This allowed us to compare the accuracy and inter-scan reliability of derived measures of white matter structure (bundle segmentation, voxel-wise scalar maps) produced by the CS-DSI and the full DSI schemes. We found that CS-DSI estimates of both bundle segmentations and voxel-wise scalars were nearly as accurate and reliable as those generated by the full DSI scheme. Moreover, we found that the accuracy and reliability of CS-DSI was higher in white matter bundles that were more reliably segmented by the full DSI scheme. As a final step, we replicated the accuracy of CS-DSI in a prospectively acquired dataset (n = 20, scanned once). Together, these results illustrate the utility of CS-DSI for reliably delineating in vivo white matter architecture in a fraction of the scan time, underscoring its promise for both clinical and research applications.


Subject(s)
Diffusion Magnetic Resonance Imaging , White Matter , Humans , Reproducibility of Results , Diffusion Magnetic Resonance Imaging/methods , Brain/diagnostic imaging , Brain/anatomy & histology , White Matter/diagnostic imaging , White Matter/anatomy & histology , Autopsy , Algorithms
4.
Magn Reson Med ; 92(3): 1277-1289, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38469893

ABSTRACT

PURPOSE: Ultrahigh field (≥7 T) MRI is at the cutting edge of medical imaging, enabling enhanced spatial and spectral resolution as well as enhanced susceptibility contrast. However, transmit ( B 1 + $$ {\mathrm{B}}_1^{+} $$ ) field inhomogeneity due to standing wave effects caused by the shortened RF wavelengths at 7 T is still a challenge to overcome. Novel hardware methods such as dielectric pads have been shown to improve the B 1 + $$ {\mathrm{B}}_1^{+} $$ field inhomogeneity but are currently limited in their corrective effect by the range of high-permittivity materials available and have a fixed shelf life. In this work, an optimized metasurface design is presented that demonstrates in vivo enhancement of the B 1 + $$ {\mathrm{B}}_1^{+} $$ field. METHODS: A prototype metasurface was optimized by an empirical capacitor sweep and by varying the period size. Phantom temperature experiments were performed to evaluate potential metasurface heating effects during scanning. Lastly, in vivo gradient echo images and B 1 + $$ {\mathrm{B}}_1^{+} $$ maps were acquired on five healthy subjects on a 7 T system. Dielectric pads were also used as a comparison throughout the work as a standard comparison. RESULTS: The metasurfaces presented here enhanced the average relative SNR of the gradient echo images by a factor of 2.26 compared to the dielectric pads factor of 1.61. Average B 1 + $$ {\mathrm{B}}_1^{+} $$ values reflected a similar enhancement of 27.6% with the metasurfaces present versus 8.9% with the dielectric pads. CONCLUSION: The results demonstrate that metasurfaces provide superior performance to dielectric padding as shown by B 1 + $$ {\mathrm{B}}_1^{+} $$ maps reflecting their direct effects and resulting enhancements in image SNR at 7 T.


Subject(s)
Equipment Design , Magnetic Resonance Imaging , Phantoms, Imaging , Magnetic Resonance Imaging/instrumentation , Humans , Leg/diagnostic imaging , Adult , Image Enhancement/methods , Female , Male , Image Processing, Computer-Assisted/methods , Algorithms , Signal-To-Noise Ratio
5.
Magn Reson Med ; 90(4): 1537-1546, 2023 10.
Article in English | MEDLINE | ID: mdl-37279010

ABSTRACT

PURPOSE: Nuclear Overhauser effect magnetization transfer ratio (NOEMTR ) is a technique used to investigate brain lipids and macromolecules in greater detail than other techniques and benefits from increased contrast at 7 T. However, this contrast can become degraded because of B 1 + $$ {\mathrm{B}}_1^{+} $$ inhomogeneities present at ultra-high field strengths. High-permittivity dielectric pads (DP) have been used to correct for these inhomogeneities via displacement currents generating secondary magnetic fields. The purpose of this work is to demonstrate that dielectric pads can be used to mitigate B 1 + $$ {\mathrm{B}}_1^{+} $$ inhomogeneities and improve NOEMTR contrast in the temporal lobes at 7 T. METHODS: Partial 3D NOEMTR contrast images and whole brain B 1 + $$ {\mathrm{B}}_1^{+} $$ field maps were acquired on a 7 T MRI across six healthy subjects. Calcium titanate DP, having a relative permittivity of 110, was placed next to the subject's head near the temporal lobes. Pad corrected NOEMTR images had a separate postprocessing linear correction applied. RESULTS: DP provided supplemental B 1 + $$ {\mathrm{B}}_1^{+} $$ to the temporal lobes while also reducing the B 1 + $$ {\mathrm{B}}_1^{+} $$ magnitude across the posterior and superior regions of the brain. This resulted in a statistically significant increase in NOEMTR contrast in substructures of the temporal lobes both with and without linear correction. The padding also produced a convergence in NOEMTR contrast toward approximately equal mean values. CONCLUSION: NOEMTR images showed significant improvement in temporal lobe contrast when DP were used, which resulted from an increase in B 1 + $$ {\mathrm{B}}_1^{+} $$ homogeneity across the entire brain slab. DP-derived improvements in NOEMTR are expected to increase the robustness of the brain substructural measures both in healthy and pathological conditions.


Subject(s)
Brain , Head , Humans , Brain/diagnostic imaging , Magnetic Resonance Imaging/methods , Brain Mapping , Magnetic Fields , 5-Methyltetrahydrofolate-Homocysteine S-Methyltransferase
6.
Alzheimers Dement ; 19(6): 2355-2364, 2023 06.
Article in English | MEDLINE | ID: mdl-36464907

ABSTRACT

INTRODUCTION: Neurodegenerative disorders are associated with different pathologies that often co-occur but cannot be measured specifically with in vivo methods. METHODS: Thirty-three brain hemispheres from donors with an Alzheimer's disease (AD) spectrum diagnosis underwent T2-weighted magnetic resonance imaging (MRI). Gray matter thickness was paired with histopathology from the closest anatomic region in the contralateral hemisphere. RESULTS: Partial Spearman correlation of phosphorylated tau and cortical thickness with TAR DNA-binding protein 43 (TDP-43) and α-synuclein scores, age, sex, and postmortem interval as covariates showed significant relationships in entorhinal and primary visual cortices, temporal pole, and insular and posterior cingulate gyri. Linear models including Braak stages, TDP-43 and α-synuclein scores, age, sex, and postmortem interval showed significant correlation between Braak stage and thickness in the parahippocampal gyrus, entorhinal cortex, and Broadman area 35. CONCLUSION: We demonstrated an association of measures of AD pathology with tissue loss in several AD regions despite a limited range of pathology in these cases. HIGHLIGHTS: Neurodegenerative disorders are associated with co-occurring pathologies that cannot be measured specifically with in vivo methods. Identification of the topographic patterns of these pathologies in structural magnetic resonance imaging (MRI) may provide probabilistic biomarkers. We demonstrated the correlation of the specific patterns of tissue loss from ex vivo brain MRI with underlying pathologies detected in postmortem brain hemispheres in patients with Alzheimer's disease (AD) spectrum disorders. The results provide insight into the interpretation of in vivo structural MRI studies in patients with AD spectrum disorders.


Subject(s)
Alzheimer Disease , Neurodegenerative Diseases , Humans , Alzheimer Disease/metabolism , alpha-Synuclein/metabolism , tau Proteins/metabolism , Neurodegenerative Diseases/complications , Magnetic Resonance Imaging , DNA-Binding Proteins
7.
Magn Reson Med ; 88(6): 2475-2484, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36178233

ABSTRACT

PURPOSE: Ultra-high field MR imaging lacks B1 + inhomogeneity due to shorter RF wavelengths used at higher field strengths compared to human anatomy. CEST techniques tend to be highly susceptible to B1 + inhomogeneities due to a high and uniform B1 + field being necessary to create the endogenous contrast. High-permittivity dielectric pads have seen increasing usage in MR imaging due to their ability to tailor the spatial distribution of the B1 + field produced. The purpose of this work is to demonstrate that dielectric materials can be used to improve glutamate weighted CEST (gluCEST) at 7T. THEORY AND METHODS: GluCEST images were acquired on a 7T system on six healthy volunteers. Aqueous calcium titanate pads, with a permittivity of approximately 110, were placed on either side in the subject's head near the temporal lobes. A post-processing correction algorithm was implemented in combination with dielectric padding to compare contrast improvement. Tissue segmentation was performed to assess the effect of dielectric pads on gray and white matter separately. RESULTS: GluCEST images demonstrated contrast enhancement in the lateral temporal lobe regions with dielectric pad placement. Tissue segmentation analysis showed an increase in correction effectiveness within the gray matter tissue compared to white matter tissue. Statistical testing suggested a significant difference in gluCEST contrast when pads were used and showed a difference in the gray matter tissue segment. CONCLUSION: The use of dielectric pads improved the B1 + field homogeneity and enhanced gluCEST contrast for all subjects when compared to data that did not incorporate padding.


Subject(s)
Glutamic Acid , White Matter , Algorithms , Gray Matter , Humans , Magnetic Resonance Imaging/methods
8.
Magn Reson Med ; 87(2): 629-645, 2022 02.
Article in English | MEDLINE | ID: mdl-34490929

ABSTRACT

PURPOSE: To compare prospective motion correction (PMC) and retrospective motion correction (RMC) in Cartesian 3D-encoded MPRAGE scans and to investigate the effects of correction frequency and parallel imaging on the performance of RMC. METHODS: Head motion was estimated using a markerless tracking system and sent to a modified MPRAGE sequence, which can continuously update the imaging FOV to perform PMC. The prospective correction was applied either before each echo train (before-ET) or at every sixth readout within the ET (within-ET). RMC was applied during image reconstruction by adjusting k-space trajectories according to the measured motion. The motion correction frequency was retrospectively increased with RMC or decreased with reverse RMC. Phantom and in vivo experiments were used to compare PMC and RMC, as well as to compare within-ET and before-ET correction frequency during continuous motion. The correction quality was quantitatively evaluated using the structural similarity index measure with a reference image without motion correction and without intentional motion. RESULTS: PMC resulted in superior image quality compared to RMC both visually and quantitatively. Increasing the correction frequency from before-ET to within-ET reduced the motion artifacts in RMC. A hybrid PMC and RMC correction, that is, retrospectively increasing the correction frequency of before-ET PMC to within-ET, also reduced motion artifacts. Inferior performance of RMC compared to PMC was shown with GRAPPA calibration data without intentional motion and without any GRAPPA acceleration. CONCLUSION: Reductions in local Nyquist violations with PMC resulted in superior image quality compared to RMC. Increasing the motion correction frequency to within-ET reduced the motion artifacts in both RMC and PMC.


Subject(s)
Artifacts , Magnetic Resonance Imaging , Brain/diagnostic imaging , Image Processing, Computer-Assisted , Motion , Prospective Studies , Retrospective Studies
9.
Magn Reson Med ; 87(4): 1914-1922, 2022 04.
Article in English | MEDLINE | ID: mdl-34888942

ABSTRACT

PURPOSE: Fetal brain Magnetic Resonance Imaging suffers from unpredictable and unconstrained fetal motion that causes severe image artifacts even with half-Fourier single-shot fast spin echo (HASTE) readouts. This work presents the implementation of a closed-loop pipeline that automatically detects and reacquires HASTE images that were degraded by fetal motion without any human interaction. METHODS: A convolutional neural network that performs automatic image quality assessment (IQA) was run on an external GPU-equipped computer that was connected to the internal network of the MRI scanner. The modified HASTE pulse sequence sent each image to the external computer, where the IQA convolutional neural network evaluated it, and then the IQA score was sent back to the sequence. At the end of the HASTE stack, the IQA scores from all the slices were sorted, and only slices with the lowest scores (corresponding to the slices with worst image quality) were reacquired. RESULTS: The closed-loop HASTE acquisition framework was tested on 10 pregnant mothers, for a total of 73 acquisitions of our modified HASTE sequence. The IQA convolutional neural network, which was successfully employed by our modified sequence in real time, achieved an accuracy of 85.2% and area under the receiver operator characteristic of 0.899. CONCLUSION: The proposed acquisition/reconstruction pipeline was shown to successfully identify and automatically reacquire only the motion degraded fetal brain HASTE slices in the prescribed stack. This minimizes the overall time spent on HASTE acquisitions by avoiding the need to repeat the entire stack if only few slices in the stack are motion-degraded.


Subject(s)
Fetus , Magnetic Resonance Imaging , Female , Fetus/diagnostic imaging , Humans , Image Processing, Computer-Assisted , Magnetic Resonance Imaging/methods , Motion , Pregnancy
10.
Brain ; 144(9): 2784-2797, 2021 10 22.
Article in English | MEDLINE | ID: mdl-34259858

ABSTRACT

Tau protein neurofibrillary tangles are closely linked to neuronal/synaptic loss and cognitive decline in Alzheimer's disease and related dementias. Our knowledge of the pattern of neurofibrillary tangle progression in the human brain, critical to the development of imaging biomarkers and interpretation of in vivo imaging studies in Alzheimer's disease, is based on conventional two-dimensional histology studies that only sample the brain sparsely. To address this limitation, ex vivo MRI and dense serial histological imaging in 18 human medial temporal lobe specimens (age 75.3 ± 11.4 years, range 45 to 93) were used to construct three-dimensional quantitative maps of neurofibrillary tangle burden in the medial temporal lobe at individual and group levels. Group-level maps were obtained in the space of an in vivo brain template, and neurofibrillary tangles were measured in specific anatomical regions defined in this template. Three-dimensional maps of neurofibrillary tangle burden revealed significant variation along the anterior-posterior axis. While early neurofibrillary tangle pathology is thought to be confined to the transentorhinal region, we found similar levels of burden in this region and other medial temporal lobe subregions, including amygdala, temporopolar cortex, and subiculum/cornu ammonis 1 hippocampal subfields. Overall, the three-dimensional maps of neurofibrillary tangle burden presented here provide more complete information about the distribution of this neurodegenerative pathology in the region of the cortex where it first emerges in Alzheimer's disease, and may help inform the field about the patterns of pathology spread, as well as support development and validation of neuroimaging biomarkers.


Subject(s)
Brain Mapping/methods , Imaging, Three-Dimensional/methods , Neurofibrillary Tangles/pathology , Temporal Lobe/diagnostic imaging , Temporal Lobe/pathology , Aged , Aged, 80 and over , Cohort Studies , Female , Humans , Magnetic Resonance Imaging/methods , Male , Middle Aged
11.
Magn Reson Med ; 86(2): 1145-1158, 2021 08.
Article in English | MEDLINE | ID: mdl-33772869

ABSTRACT

PURPOSE: We present a novel perfusion phantom for validation of arterial spin labeled (ASL) perfusion MRI methods and protocols. METHODS: Impinging jets, driven by a peristaltic pump, were used to achieve perfusion-like mixing of magnetically labeled inflowing fluid within a perfusion compartment. The phantom was validated by varying pump rates and obtaining ASL-MRI data at multiple postlabeling delays using a pseudo-continuous ASL sequence with a 3D stack-of-spirals readout. An additional data set was acquired using a pseudo-continuous ASL sequence with a 2D EPI readout. Phantom sensitivity to pseudo-continuous ASL labeling efficiency was also tested. RESULTS: Fluid dynamics simulations predicted that maximum mixing would occur near the central axis of the perfusion compartment. Experimentally observed signal changes within this region were reproducible and well fit by the standard Buxton general kinetic model. Simulations and experimental data showed no label outflow from the perfusion chamber and calculated perfusion rates, averaged over the entire phantom volume, agreed with the expected volumetric flow rates provided by the flow pump. Phantom sensitivity to pseudo-continuous ASL labeling parameters was also demonstrated. CONCLUSION: Perfusion-like signal can be simulated using impinging jets to create a well-mixed compartment. Observed perfusion and transit time values were reproducible and within the physiological range for brain perfusion. This phantom design has a broad range of potential applications in both basic and clinical research involving ASL MRI.


Subject(s)
Cerebrovascular Circulation , Magnetic Resonance Angiography , Magnetic Resonance Imaging , Perfusion , Spin Labels
12.
NMR Biomed ; 34(5): e4364, 2021 05.
Article in English | MEDLINE | ID: mdl-33089547

ABSTRACT

Long acquisition times due to intrinsically low signal-to-noise ratio and the need for highly homogeneous B0 field make MRS particularly susceptible to motion or scanner instability compared with MRI. Motion-induced changes in both localization and shimming (ie B0 homogeneity) degrade MRS data quality. To mitigate the effects of motion three approaches can be employed: (1) subject immobilization, (2) retrospective correction, and (3) prospective real-time correction using internal and/or external tracking methods. Prospective real-time correction methods can simultaneously update localization and the B0 field to improve MRS data quality. While localization errors can be corrected with both internal (navigators) and external (optical camera, NMR probes) tracking methods, the B0 field correction requires internal navigator methods to measure the B0 field inside the imaged volume and the possibility to update the scanner shim hardware in real time. Internal and external tracking can rapidly update the MRS localization with submillimeter and subdegree precision, while scanner frequency and first-order shims of scanner hardware can be updated by internal methods every sequence repetition. These approaches are most well developed for neuroimaging, for which rigid transformation is primarily applicable. Real-time correction greatly improves the stability of MRS acquisition and quantification, as shown in clinical studies on subjects prone to motion, including children and patients with movement disorders, enabling robust measurement of metabolite signals including those with low concentrations, such as gamma-aminobutyric acid and glutathione. Thus, motion correction is recommended for MRS users and calls for tighter integration and wider availability of such methods by MR scanner manufacturers.


Subject(s)
Consensus , Magnetic Resonance Spectroscopy , Motion , Expert Testimony , Humans , Magnetic Resonance Imaging , Metabolome , gamma-Aminobutyric Acid/metabolism
13.
Neuroimage ; 208: 116400, 2020 03.
Article in English | MEDLINE | ID: mdl-31778819

ABSTRACT

Head motion represents one of the greatest technical obstacles in magnetic resonance imaging (MRI) of the human brain. Accurate detection of artifacts induced by head motion requires precise estimation of movement. However, head motion estimates may be corrupted by artifacts due to magnetic main field fluctuations generated by body motion. In the current report, we examine head motion estimation in multiband resting state functional connectivity MRI (rs-fcMRI) data from the Adolescent Brain and Cognitive Development (ABCD) Study and comparison 'single-shot' datasets. We show that respirations contaminate movement estimates in functional MRI and that respiration generates apparent head motion not associated with functional MRI quality reductions. We have developed a novel approach using a band-stop filter that accurately removes these respiratory effects from motion estimates. Subsequently, we demonstrate that utilizing a band-stop filter improves post-processing fMRI data quality. Lastly, we demonstrate the real-time implementation of motion estimate filtering in our FIRMM (Framewise Integrated Real-Time MRI Monitoring) software package.


Subject(s)
Artifacts , Functional Neuroimaging/standards , Head Movements , Magnetic Resonance Imaging/standards , Respiration , Adolescent , Child , Female , Humans , Male
14.
Magn Reson Med ; 82(1): 126-144, 2019 07.
Article in English | MEDLINE | ID: mdl-30821010

ABSTRACT

PURPOSE: To integrate markerless head motion tracking with prospectively corrected neuroanatomical MRI sequences and to investigate high-frequency motion correction during imaging echo trains. METHODS: A commercial 3D surface tracking system, which estimates head motion by registering point cloud reconstructions of the face, was used to adapt the imaging FOV based on head movement during MPRAGE and T2 SPACE (3D variable flip-angle turbo spin-echo) sequences. The FOV position and orientation were updated every 6 lines of k-space (< 50 ms) to enable "within-echo-train" prospective motion correction (PMC). Comparisons were made with scans using "before-echo-train" PMC, in which the FOV was updated only once per TR, before the start of each echo train (ET). Continuous-motion experiments with phantoms and in vivo were used to compare these high-frequency and low-frequency correction strategies. MPRAGE images were processed with FreeSurfer to compare estimates of brain structure volumes and cortical thickness in scans with different PMC. RESULTS: The median absolute pose differences between markerless tracking and MR image registration were 0.07/0.26/0.15 mm for x/y/z translation and 0.06º/0.02º/0.12° for rotation about x/y/z. The PMC with markerless tracking substantially reduced motion artifacts. The continuous-motion experiments showed that within-ET PMC, which minimizes FOV encoding errors during ETs that last over 1 second, reduces artifacts compared with before-ET PMC. T2 SPACE was found to be more sensitive to motion during ETs than MPRAGE. FreeSurfer morphometry estimates from within-ET PMC MPRAGE images were the most accurate. CONCLUSION: Markerless head tracking can be used for PMC, and high-frequency within-ET PMC can reduce sensitivity to motion during long imaging ETs.


Subject(s)
Brain/diagnostic imaging , Image Processing, Computer-Assisted/methods , Magnetic Resonance Imaging/methods , Artifacts , Head Movements/physiology , Humans , Phantoms, Imaging
15.
Neuroimage ; 169: 407-418, 2018 04 01.
Article in English | MEDLINE | ID: mdl-29278774

ABSTRACT

Data quality is increasingly recognized as one of the most important confounding factors in brain imaging research. It is particularly important for studies of brain development, where age is systematically related to in-scanner motion and data quality. Prior work has demonstrated that in-scanner head motion biases estimates of structural neuroimaging measures. However, objective measures of data quality are not available for most structural brain images. Here we sought to identify quantitative measures of data quality for T1-weighted volumes, describe how these measures relate to cortical thickness, and delineate how this in turn may bias inference regarding associations with age in youth. Three highly-trained raters provided manual ratings of 1840 raw T1-weighted volumes. These images included a training set of 1065 images from Philadelphia Neurodevelopmental Cohort (PNC), a test set of 533 images from the PNC, as well as an external test set of 242 adults acquired on a different scanner. Manual ratings were compared to automated quality measures provided by the Preprocessed Connectomes Project's Quality Assurance Protocol (QAP), as well as FreeSurfer's Euler number, which summarizes the topological complexity of the reconstructed cortical surface. Results revealed that the Euler number was consistently correlated with manual ratings across samples. Furthermore, the Euler number could be used to identify images scored "unusable" by human raters with a high degree of accuracy (AUC: 0.98-0.99), and out-performed proxy measures from functional timeseries acquired in the same scanning session. The Euler number also was significantly related to cortical thickness in a regionally heterogeneous pattern that was consistent across datasets and replicated prior results. Finally, data quality both inflated and obscured associations with age during adolescence. Taken together, these results indicate that reliable measures of data quality can be automatically derived from T1-weighted volumes, and that failing to control for data quality can systematically bias the results of studies of brain maturation.


Subject(s)
Cerebral Cortex/diagnostic imaging , Data Accuracy , Magnetic Resonance Imaging/standards , Neuroimaging/standards , Quality Control , Adolescent , Adult , Cohort Studies , Datasets as Topic , Humans
16.
Neuroimage ; 183: 972-984, 2018 12.
Article in English | MEDLINE | ID: mdl-30261308

ABSTRACT

The Human Connectome Projects in Development (HCP-D) and Aging (HCP-A) are two large-scale brain imaging studies that will extend the recently completed HCP Young-Adult (HCP-YA) project to nearly the full lifespan, collecting structural, resting-state fMRI, task-fMRI, diffusion, and perfusion MRI in participants from 5 to 100+ years of age. HCP-D is enrolling 1300+ healthy children, adolescents, and young adults (ages 5-21), and HCP-A is enrolling 1200+ healthy adults (ages 36-100+), with each study collecting longitudinal data in a subset of individuals at particular age ranges. The imaging protocols of the HCP-D and HCP-A studies are very similar, differing primarily in the selection of different task-fMRI paradigms. We strove to harmonize the imaging protocol to the greatest extent feasible with the completed HCP-YA (1200+ participants, aged 22-35), but some imaging-related changes were motivated or necessitated by hardware changes, the need to reduce the total amount of scanning per participant, and/or the additional challenges of working with young and elderly populations. Here, we provide an overview of the common HCP-D/A imaging protocol including data and rationales for protocol decisions and changes relative to HCP-YA. The result will be a large, rich, multi-modal, and freely available set of consistently acquired data for use by the scientific community to investigate and define normative developmental and aging related changes in the healthy human brain.


Subject(s)
Aging , Brain , Connectome/methods , Longevity , Adolescent , Adult , Aged , Aged, 80 and over , Child , Child, Preschool , Female , Humans , Magnetic Resonance Imaging/methods , Male , Middle Aged , Young Adult
17.
Magn Reson Med ; 78(6): 2283-2289, 2017 Dec.
Article in English | MEDLINE | ID: mdl-28247427

ABSTRACT

PURPOSE: Subject motion may cause errors in estimates of blood T2 when using the T2 -relaxation under spin tagging (TRUST) technique on noncompliant subjects like neonates. By incorporating 3D volume navigators (vNavs) into the TRUST pulse sequence, independent measurements of motion during scanning permit evaluation of these errors. METHODS: The effects of integrated vNavs on TRUST-based T2 estimates were evaluated using simulations and in vivo subject data. Two subjects were scanned with the TRUST+vNav sequence during prescribed movements. Mean motion scores were derived from vNavs and TRUST images, along with a metric of exponential fit quality. Regression analysis was performed between T2 estimates and mean motion scores. Also, motion scores were determined from independent neonatal scans. RESULTS: vNavs negligibly affected venous blood T2 estimates and better detected subject motion than fit quality metrics. Regression analysis showed that T2 is biased upward by 4.1 ms per 1 mm of mean motion score. During neonatal scans, mean motion scores of 0.6 to 2.0 mm were detected. CONCLUSION: Motion during TRUST causes an overestimate of T2 , which suggests a cautious approach when comparing TRUST-based cerebral oxygenation measurements of noncompliant subjects. Magn Reson Med 78:2283-2289, 2017. © 2017 International Society for Magnetic Resonance in Medicine.


Subject(s)
Brain/diagnostic imaging , Imaging, Three-Dimensional , Magnetic Resonance Imaging , Oxygen/chemistry , Adult , Algorithms , Computer Simulation , Female , Humans , Image Enhancement , Image Interpretation, Computer-Assisted , Male , Models, Statistical , Motion , Oximetry , Regression Analysis , Reproducibility of Results , Young Adult
18.
Neuroimage ; 127: 11-22, 2016 Feb 15.
Article in English | MEDLINE | ID: mdl-26654788

ABSTRACT

Recent work has demonstrated that subject motion produces systematic biases in the metrics computed by widely used morphometry software packages, even when the motion is too small to produce noticeable image artifacts. In the common situation where the control population exhibits different behaviors in the scanner when compared to the experimental population, these systematic measurement biases may produce significant confounds for between-group analyses, leading to erroneous conclusions about group differences. While previous work has shown that prospective motion correction can improve perceived image quality, here we demonstrate that, in healthy subjects performing a variety of directed motions, the use of the volumetric navigator (vNav) prospective motion correction system significantly reduces the motion-induced bias and variance in morphometry.


Subject(s)
Artifacts , Brain , Image Processing, Computer-Assisted/methods , Magnetic Resonance Imaging , Neuroimaging/methods , Adult , Algorithms , Female , Head Movements , Humans , Male , Motion , Young Adult
19.
Magn Reson Med ; 76(5): 1420-1430, 2016 11.
Article in English | MEDLINE | ID: mdl-26567122

ABSTRACT

PURPOSE: The aim of this study was to improve robustness to motion in a vessel-encoded angiography sequence used for patient scans. The sequence is particularly sensitive to motion between imaging segments, which causes ghosting and blurring that propagates to the final angiogram. METHODS: Volumetric echo planar imaging (EPI) navigators acquired in 275 ms were inserted after the imaging readout in a vessel-encoded pseudo-continuous arterial spin labeling (VEPCASL) sequence. The effects of movement between segments on the images were tested with phantom experiments. Deliberate motion experiments with healthy volunteers were performed to compare prospective motion correction (PMC) with reacquisition versus no correction. RESULTS: In scans without motion, the addition of the EPI navigator to the sequence did not affect the quality of the angiograms in comparison with the original sequence. PMC and reacquisition improved the visibility of vessels in the angiograms compared with the scans without correction. The reacquisition strategy was shown to be important for complete correction of imaging artifacts. CONCLUSION: We have demonstrated an effective method to correct motion in vessel-encoded angiography. For reacquisition of 15 segments, the technique requires approximately 30 s of additional scanning (∼25%). Magn Reson Med 76:1420-1430, 2016. © 2015 International Society for Magnetic Resonance in Medicine.


Subject(s)
Artifacts , Cardiac-Gated Imaging Techniques/methods , Carotid Arteries/diagnostic imaging , Cerebral Angiography/methods , Image Enhancement/methods , Imaging, Three-Dimensional/methods , Magnetic Resonance Angiography/methods , Algorithms , Echo-Planar Imaging/methods , Humans , Image Interpretation, Computer-Assisted/methods , Motion , Reproducibility of Results , Sensitivity and Specificity , Spin Labels , Subtraction Technique
20.
Neuroimage ; 107: 107-115, 2015 Feb 15.
Article in English | MEDLINE | ID: mdl-25498430

ABSTRACT

Imaging biomarkers derived from magnetic resonance imaging (MRI) data are used to quantify normal development, disease, and the effects of disease-modifying therapies. However, motion during image acquisition introduces image artifacts that, in turn, affect derived markers. A systematic effect can be problematic since factors of interest like age, disease, and treatment are often correlated with both a structural change and the amount of head motion in the scanner, confounding the ability to distinguish biology from artifact. Here we evaluate the effect of head motion during image acquisition on morphometric estimates of structures in the human brain using several popular image analysis software packages (FreeSurfer 5.3, VBM8 SPM, and FSL Siena 5.0.7). Within-session repeated T1-weighted MRIs were collected on 12 healthy volunteers while performing different motion tasks, including two still scans. We show that volume and thickness estimates of the cortical gray matter are biased by head motion with an average apparent volume loss of roughly 0.7%/mm/min of subject motion. Effects vary across regions and remain significant after excluding scans that fail a rigorous quality check. In view of these results, the interpretation of reported morphometric effects of movement disorders or other conditions with increased motion tendency may need to be revisited: effects may be overestimated when not controlling for head motion. Furthermore, drug studies with hypnotic, sedative, tranquilizing, or neuromuscular-blocking substances may contain spurious "effects" of reduced atrophy or brain growth simply because they affect motion distinct from true effects of the disease or therapeutic process.


Subject(s)
Gray Matter/anatomy & histology , Head Movements/physiology , Magnetic Resonance Imaging/methods , Adult , Algorithms , Artifacts , Biomarkers , Humans , Image Interpretation, Computer-Assisted/methods , Image Processing, Computer-Assisted , Linear Models , Quality Control
SELECTION OF CITATIONS
SEARCH DETAIL