Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
1.
J Struct Biol ; 216(3): 108105, 2024 Jun 08.
Article in English | MEDLINE | ID: mdl-38852682

ABSTRACT

Human serum albumin (HSA) is the most prevalent plasma protein in the human body, accounting for 60 % of the total plasma protein. HSA plays a major pharmacokinetic function, serving as a facilitator in the distribution of endobiotics and xenobiotics within the organism. In this paper we report the cryoEM structures of HSA in the apo form and in complex with two ligands (salicylic acid and teniposide) at a resolution of 3.5, 3.7 and 3.4 Å, respectively. We expand upon previously published work and further demonstrate that sub-4 Å maps of ∼60 kDa proteins can be routinely obtained using a 200 kV microscope, employing standard workflows. Most importantly, these maps allowed for the identification of small molecule ligands, emphasizing the practical applicability of this methodology and providing a starting point for subsequent computational modeling and in silico optimization.

2.
Small ; 20(27): e2307618, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38308358

ABSTRACT

This study aims to compare the potential of Polyethylene glycol (PEG-free and PEG-based self-emulsifying drug delivery systems (SEDDS) for the oral administration of insulin glargine (IG). Hydrophobic ion pairs (HIPs) of IG are formed using various counterions. HIPs are assessed for log P octanol/water and dissociation behavior. They are incorporated into SEDDS based on polyglycerol (PG) and zwitterionic surfactant (ZW) using response surface methodology and compared to conventional PEG-SEDDS in size, stability, and log D SEDDS/release medium. Oral IG bioavailability in PG/ZW-SEDDS and PEG-SEDDS is evaluated in rats. Among the various counterions studied, IG-BIS (bis(isotridecyl)sulfosuccinate) HIPs demonstrated the highest log P and an improved dissociation profile. PG/ZW-SEDDS and PEG-SEDDS have similar ≈40 nm sizes and are stable over 24 h. Both formulations have log D > 4 in water and >2 in 50 mM phosphate buffer pH 6.8. PG/ZW-SEDDS yielded an oral bioavailability of 2.13 ± 0.66% for IG, while the employment of PEG-SEDDS resulted in an oral bioavailability of 1.15 ± 0.35%. This study highlights the prospective utilization of PEG-free SEDDS involving the concurrent application of PG and ZW surfactants, an alternative to conventional PEG surfactants, for improved oral therapeutic (poly) peptide delivery.


Subject(s)
Biological Availability , Drug Delivery Systems , Peptides , Polyethylene Glycols , Polyethylene Glycols/chemistry , Drug Delivery Systems/methods , Administration, Oral , Animals , Peptides/chemistry , Peptides/pharmacokinetics , Emulsions/chemistry , Rats , Male , Rats, Sprague-Dawley , Surface-Active Agents/chemistry , Glycerol/chemistry , Glycerol/analogs & derivatives
3.
Biomaterials ; 312: 122718, 2024 Jul 27.
Article in English | MEDLINE | ID: mdl-39084097

ABSTRACT

Functional hydrogels are used for numerous biomedical applications such as tissue engineering, wound dressings, lubricants, contact lenses and advanced drug delivery systems. Most of them are based on synthetic or natural polymers forming a three-dimensional network that contains aqueous media. Among synthetic polymers, poly(meth)acrylates, polyethyleneglycols, poly(vinylalcohols), poly(vinylpyrrolidones), PLGA and poly(urethanes) are of high relevance, whereas natural polymers are mainly polysaccharides such as hyaluronic acid, alginate or chitosan and proteins such as albumin, collagen or elastin. In contrast to most synthetic polymers, natural polymers are biodegradable. Both synthetic and natural polymers are often chemically modified in order to improve or induce favorable properties and functions like high mechanical strength, stiffness, elasticity, high porosity, adhesive properties, in situ gelling properties, high water binding capacity or drug release controlling properties. Within this review we provide an overview about the broad spectrum of biomedical applications of functional hydrogels, summarize innovative approaches, discuss the concept of relevant functional hydrogels that are in clinical trials and highlight advanced products as examples for successful developments.

4.
Drug Deliv Transl Res ; 14(9): 2370-2385, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38289467

ABSTRACT

The aim of this study was to design surfactants based on histidine (His) for hydrophobic ion-pairing and evaluate their safety and efficacy. Lauryl, palmitoyl and oleyl alcohol, as well as 2-hexyl-1-decanol were converted into surfactants with histidine as head-group via esterification. The synthesized His-surfactants were characterized regarding pKa, critical micellar concentration (CMC), biodegradability, toxicity on Caco-2 cells, and ability to provide endosomal escape. Furthermore, the suitability of these agents to be employed as counterions in hydrophobic ion pairing was evaluated. Chemical structures were confirmed by 1H-NMR, FT-IR, and MS. The synthesized surfactants showed pKa values ranging from 4.9 to 6.0 and CMC values in the range of 0.3 to 7.0 mM. Their biodegradability was proven by enzymatic cleavage within 24 h. Below the CMC, His-surfactants did not show cytotoxic effects on Caco-2 cells (cell viability > 80%). All His-surfactants showed the ability to provide endosomal escape in a pH-dependent manner in the range of 5.2 to 6.8. Complexes formed between His-surfactants and heparin or plasmid DNA (pDNA) via hydrophobic ion pairing showed at least 100-fold higher lipophilicity than the correspondent model drugs. According to these results, His-surfactants might be a promising safe tool for delivering hydrophilic macromolecular drugs and nucleic acids.


Subject(s)
Cell Survival , Histidine , Hydrophobic and Hydrophilic Interactions , Surface-Active Agents , Humans , Surface-Active Agents/chemistry , Caco-2 Cells , Histidine/chemistry , Cell Survival/drug effects , Heparin/chemistry , Plasmids , Drug Delivery Systems , DNA/administration & dosage , DNA/chemistry , Cations/chemistry , Micelles
5.
Eur J Pharm Sci ; 196: 106761, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38580169

ABSTRACT

Inspired by nature, tissue engineering aims to employ intricate mechanisms for advanced clinical interventions, unlocking inherent biological potential and propelling medical breakthroughs. Therefore, medical, and pharmaceutical fields are growing interest in tissue and organ replacement, repair, and regeneration by this technology. Three primary mechanisms are currently used in tissue engineering: transplantation of cells (I), injection of growth factors (II) and cellular seeding in scaffolds (III). However, to develop scaffolds presenting highest potential, reinforcement with polymeric materials is growing interest. For instance, natural and synthetic polymers can be used. Regardless, chitosan and keratin are two biopolymers presenting great biocompatibility, biodegradability and non-antigenic properties for tissue engineering purposes offering restoration and revitalization. Therefore, combination of chitosan and keratin has been studied and results exhibit highly porous scaffolds providing optimal environment for tissue cultivation. This review aims to give an historical as well as current overview of tissue engineering, presenting mechanisms used and polymers involved in the field.

6.
J Colloid Interface Sci ; 677(Pt A): 1108-1119, 2024 Jul 31.
Article in English | MEDLINE | ID: mdl-39142152

ABSTRACT

AIM: To evaluate the impact of the surface decoration of cannabidiol (CBD) loaded self-emulsifying drug delivery systems (SEDDS) on the efficacy of the formulations to cross the various barriers faced by orally administered drugs. METHODS: Polyethylene glycol (PEG)-free polyglycerol (PG)-based SEDDS, mixed zwitterionic phosphatidyl choline (PC)/PEG-containing SEDDS and PEG-based SEDDS were compared regarding stability against lipid degrading enzymes, surface properties, permeation across porcine mucus, cellular uptake and cytocompatibility. RESULTS: SEDDS with a size of about 200 nm with narrow size distributions were developed and loaded with 20-21 % of CBD. For PG containing PEG-free SEDDS increased degradation by lipid degrading enzymes was observed compared to PEG-containing formulations. The surface hydrophobicity of placebo SEDDS increased in the order of PG-based to mixed PC/PEG-based to PEG-based SEDDS. The influence of this surface hydrophobicity was also observed on the ability of the SEDDS to cross the mucus gel layer where highest mucus permeation was achieved for most hydrophobic PEG-based SEDDS. Highest cellular internalization was observed for PEG-based Lumogen Yellow (LY) loaded SEDDS with 92 % in Caco-2 cells compared to only 30 % for mixed PC/PEG-based SEDDS and 1 % for PG-based SEDDS, leading to a 100-fold improvement in cellular uptake for SEDDS having highest surface hydrophobicity. For cytocompatibility all developed placebo SEDDS showed similar results with a cell survival of above 75 % for concentrations below 0.05 % on Caco-2 cells. CONCLUSION: Higher surface hydrophobicity of SEDDS to orally deliver lipophilic drugs as CBD seems to be a promising approach to increase the intracellular drug concentration by an enhanced permeation through the mucus layer and cellular internalization.

7.
Lancet Neurol ; 23(1): 37-45, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38101901

ABSTRACT

BACKGROUND: Converging lines of evidence suggest that microglia are relevant to Parkinson's disease pathogenesis, justifying exploration of therapeutic agents thought to attenuate pathogenic microglial function. We sought to test the safety and efficacy of NLY01-a brain-penetrant, pegylated, longer-lasting version of exenatide (a glucagon-like peptide-1 receptor agonist) that is believed to be anti-inflammatory via reduction of microglia activation-in Parkinson's disease. METHODS: We report a 36-week, randomised, double-blind, placebo-controlled study of NLY01 in participants with early untreated Parkinson's disease conducted at 58 movement disorder clinics in the USA. Participants meeting UK Brain Bank or Movement Disorder Society research criteria for Parkinson's disease were randomly allocated (1:1:1) to one of two active treatment groups (2·5 mg or 5·0 mg NLY01) or matching placebo, based on a central computer-generated randomisation scheme using permuted block randomisation with varying block sizes. All participants, investigators, coordinators, study staff, and sponsor personnel were masked to treatment assignments throughout the study. The primary efficacy endpoint for the primary analysis population (defined as all randomly assigned participants who received at least one dose of study drug) was change from baseline to week 36 in the sum of Movement Disorder Society Unified Parkinson's Disease Rating Scale (MDS-UPDRS) parts II and III. Safety was assessed in the safety population (all randomly allocated participants who received at least one dose of the study drug) with documentation of adverse events, vital signs, electrocardiograms, clinical laboratory assessments, physical examination, and scales for suicidality, sleepiness, impulsivity, and depression. This trial is complete and registered at ClinicalTrials.gov, NCT04154072. FINDINGS: The study took place between Jan 28, 2020, and Feb 16, 2023. 447 individuals were screened, of whom 255 eligible participants were randomly assigned (85 to each study group). One patient assigned to placebo did not receive study treatment and was not included in the primary analysis. At 36 weeks, 2·5 mg and 5·0 mg NLY01 did not differ from placebo with respect to change in sum scores on MDS-UPDRS parts II and III: difference versus placebo -0·39 (95% CI -2·96 to 2·18; p=0·77) for 2·5 mg and 0·36 (-2·28 to 3·00; p=0·79) for 5·0 mg. Treatment-emergent adverse events were similar across groups (reported in 71 [84%] of 85 patients on 2·5 mg NLY01, 79 [93%] of 85 on 5·0 mg, and 73 [87%] of 84 on placebo), with gastrointestinal disorders the most commonly observed class in active groups (52 [61%] for 2·5 mg, 64 [75%] for 5·0 mg, and 30 [36%] for placebo) and nausea the most common event overall (33 [39%] for 2·5 mg, 49 [58%] for 5·0 mg, and 16 [19%] for placebo). No deaths occurred during the study. INTERPRETATION: NLY01 at 2·5 and 5·0 mg was not associated with any improvement in Parkinson's disease motor or non-motor features compared with placebo. A subgroup analysis raised the possibility of motor benefit in younger participants. Further study is needed to determine whether these exploratory observations are replicable. FUNDING: D&D Pharmatech-Neuraly.


Subject(s)
Exenatide , Glucagon-Like Peptide-1 Receptor Agonists , Parkinson Disease , Humans , Double-Blind Method , Parkinson Disease/drug therapy , Parkinson Disease/complications , Treatment Outcome , Exenatide/analogs & derivatives , Exenatide/therapeutic use , Glucagon-Like Peptide-1 Receptor/agonists , Glucagon-Like Peptide-1 Receptor Agonists/therapeutic use
SELECTION OF CITATIONS
SEARCH DETAIL