Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
1.
J Med Genet ; 59(11): 1058-1068, 2022 11.
Article in English | MEDLINE | ID: mdl-35232796

ABSTRACT

BACKGROUND: A neurodevelopmental syndrome was recently reported in four patients with SOX4 heterozygous missense variants in the high-mobility-group (HMG) DNA-binding domain. The present study aimed to consolidate clinical and genetic knowledge of this syndrome. METHODS: We newly identified 17 patients with SOX4 variants, predicted variant pathogenicity using in silico tests and in vitro functional assays and analysed the patients' phenotypes. RESULTS: All variants were novel, distinct and heterozygous. Seven HMG-domain missense and five stop-gain variants were classified as pathogenic or likely pathogenic variant (L/PV) as they precluded SOX4 transcriptional activity in vitro. Five HMG-domain and non-HMG-domain missense variants were classified as of uncertain significance (VUS) due to negative results from functional tests. When known, inheritance was de novo or from a mosaic unaffected or non-mosaic affected parent for patients with L/PV, and from a non-mosaic asymptomatic or affected parent for patients with VUS. All patients had neurodevelopmental, neurological and dysmorphic features, and at least one cardiovascular, ophthalmological, musculoskeletal or other somatic anomaly. Patients with L/PV were overall more affected than patients with VUS. They resembled patients with other neurodevelopmental diseases, including the SOX11-related and Coffin-Siris (CSS) syndromes, but lacked the most specific features of CSS. CONCLUSION: These findings consolidate evidence of a fairly non-specific neurodevelopmental syndrome due to SOX4 haploinsufficiency in neurogenesis and multiple other developmental processes.


Subject(s)
Hand Deformities, Congenital , Intellectual Disability , Micrognathism , Neurodevelopmental Disorders , Humans , Micrognathism/genetics , Hand Deformities, Congenital/genetics , Intellectual Disability/genetics , Neurodevelopmental Disorders/genetics , Syndrome , Phenotype , DNA , SOXC Transcription Factors/genetics
2.
Am J Hum Genet ; 103(1): 154-162, 2018 07 05.
Article in English | MEDLINE | ID: mdl-29961569

ABSTRACT

TRAF7 is a multi-functional protein involved in diverse signaling pathways and cellular processes. The phenotypic consequence of germline TRAF7 variants remains unclear. Here we report missense variants in TRAF7 in seven unrelated individuals referred for clinical exome sequencing. The seven individuals share substantial phenotypic overlap, with developmental delay, congenital heart defects, limb and digital anomalies, and dysmorphic features emerging as key unifying features. The identified variants are de novo in six individuals and comprise four distinct missense changes, including a c.1964G>A (p.Arg655Gln) variant that is recurrent in four individuals. These variants affect evolutionarily conserved amino acids and are located in key functional domains. Gene-specific mutation rate analysis showed that the occurrence of the de novo variants in TRAF7 (p = 2.6 × 10-3) and the recurrent de novo c.1964G>A (p.Arg655Gln) variant (p = 1.9 × 10-8) in our exome cohort was unlikely to have occurred by chance. In vitro analyses of the observed TRAF7 mutations showed reduced ERK1/2 phosphorylation. Our findings suggest that missense mutations in TRAF7 are associated with a multisystem disorder and provide evidence of a role for TRAF7 in human development.


Subject(s)
Developmental Disabilities/genetics , Intellectual Disability/genetics , Mutation, Missense/genetics , Tumor Necrosis Factor Receptor-Associated Peptides and Proteins/genetics , Adult , Amino Acids/genetics , Child , Child, Preschool , Exome/genetics , Female , Heart Defects, Congenital/genetics , Humans , Infant , Infant, Newborn , MAP Kinase Signaling System/genetics , Male , Musculoskeletal Abnormalities/genetics , Phenotype
3.
Am J Hum Genet ; 100(4): 676-688, 2017 Apr 06.
Article in English | MEDLINE | ID: mdl-28343629

ABSTRACT

Ubiquitination is a posttranslational modification that regulates many cellular processes including protein degradation, intracellular trafficking, cell signaling, and protein-protein interactions. Deubiquitinating enzymes (DUBs), which reverse the process of ubiquitination, are important regulators of the ubiquitin system. OTUD6B encodes a member of the ovarian tumor domain (OTU)-containing subfamily of deubiquitinating enzymes. Herein, we report biallelic pathogenic variants in OTUD6B in 12 individuals from 6 independent families with an intellectual disability syndrome associated with seizures and dysmorphic features. In subjects with predicted loss-of-function alleles, additional features include global developmental delay, microcephaly, absent speech, hypotonia, growth retardation with prenatal onset, feeding difficulties, structural brain abnormalities, congenital malformations including congenital heart disease, and musculoskeletal features. Homozygous Otud6b knockout mice were subviable, smaller in size, and had congenital heart defects, consistent with the severity of loss-of-function variants in humans. Analysis of peripheral blood mononuclear cells from an affected subject showed reduced incorporation of 19S subunits into 26S proteasomes, decreased chymotrypsin-like activity, and accumulation of ubiquitin-protein conjugates. Our findings suggest a role for OTUD6B in proteasome function, establish that defective OTUD6B function underlies a multisystemic human disorder, and provide additional evidence for the emerging relationship between the ubiquitin system and human disease.


Subject(s)
Abnormalities, Multiple/genetics , Endopeptidases/genetics , Intellectual Disability/genetics , Adolescent , Animals , Child , Child, Preschool , Disease Models, Animal , Female , Gene Deletion , Humans , Male , Mice , Pedigree , Proteasome Endopeptidase Complex/genetics , Proteasome Endopeptidase Complex/metabolism , Seizures/genetics
4.
Hum Mutat ; 40(3): 267-280, 2019 03.
Article in English | MEDLINE | ID: mdl-30520571

ABSTRACT

Next-generation sequencing (NGS) has been instrumental in solving the genetic basis of rare inherited diseases, especially neurodevelopmental syndromes. However, functional workup is essential for precise phenotype definition and to understand the underlying disease mechanisms. Using whole exome (WES) and whole genome sequencing (WGS) in four independent families with hypotonia, neurodevelopmental delay, facial dysmorphism, loss of white matter, and thinning of the corpus callosum, we identified four previously unreported homozygous truncating PPP1R21 alleles: c.347delT p.(Ile116Lysfs*25), c.2170_2171insGGTA p.(Ile724Argfs*8), c.1607dupT p.(Leu536Phefs*7), c.2063delA p.(Lys688Serfs*26) and found that PPP1R21 was absent in fibroblasts of an affected individual, supporting the allele's loss of function effect. PPP1R21 function had not been studied except that a large scale affinity proteomics approach suggested an interaction with PIBF1 defective in Joubert syndrome. Our co-immunoprecipitation studies did not confirm this but in contrast defined the localization of PPP1R21 to the early endosome. Consistent with the subcellular expression pattern and the clinical phenotype exhibiting features of storage diseases, we found patient fibroblasts exhibited a delay in clearance of transferrin-488 while uptake was normal. In summary, we delineate a novel neurodevelopmental syndrome caused by biallelic PPP1R21 loss of function variants, and suggest a role of PPP1R21 within the endosomal sorting process or endosome maturation pathway.


Subject(s)
Alleles , Endocytosis , Loss of Function Mutation/genetics , Neurodevelopmental Disorders/genetics , Neurodevelopmental Disorders/pathology , Phosphoprotein Phosphatases/genetics , Adult , Child , Child, Preschool , Endosomes/metabolism , Endosomes/ultrastructure , Female , Fibroblasts/metabolism , Fibroblasts/ultrastructure , Homozygote , Humans , Infant , Infant, Newborn , Male , Myelin Sheath/metabolism , Myelin Sheath/ultrastructure , Pedigree , Phosphoprotein Phosphatases/chemistry , Syndrome , Transferrin/metabolism
5.
Am J Hum Genet ; 99(3): 720-727, 2016 09 01.
Article in English | MEDLINE | ID: mdl-27545676

ABSTRACT

SON is a key component of the spliceosomal complex and a critical mediator of constitutive and alternative splicing. Additionally, SON has been shown to influence cell-cycle progression, genomic integrity, and maintenance of pluripotency in stem cell populations. The clear functional relevance of SON in coordinating essential cellular processes and its presence in diverse human tissues suggests that intact SON might be crucial for normal growth and development. However, the phenotypic effects of deleterious germline variants in SON have not been clearly defined. Herein, we describe seven unrelated individuals with de novo variants in SON and propose that deleterious variants in SON are associated with a severe multisystem disorder characterized by developmental delay, persistent feeding difficulties, and congenital malformations, including brain anomalies.


Subject(s)
Congenital Abnormalities/genetics , DNA-Binding Proteins/genetics , Developmental Disabilities/genetics , Failure to Thrive/genetics , Intellectual Disability/genetics , Minor Histocompatibility Antigens/genetics , Sequence Deletion/genetics , Adolescent , Brain/abnormalities , Child , Child, Preschool , DNA-Binding Proteins/chemistry , Exome/genetics , Female , Humans , Male , Minor Histocompatibility Antigens/chemistry , Pedigree , Young Adult
6.
Genome Res ; 25(3): 305-15, 2015 Mar.
Article in English | MEDLINE | ID: mdl-25637381

ABSTRACT

Recommendations for laboratories to report incidental findings from genomic tests have stimulated interest in such results. In order to investigate the criteria and processes for assigning the pathogenicity of specific variants and to estimate the frequency of such incidental findings in patients of European and African ancestry, we classified potentially actionable pathogenic single-nucleotide variants (SNVs) in all 4300 European- and 2203 African-ancestry participants sequenced by the NHLBI Exome Sequencing Project (ESP). We considered 112 gene-disease pairs selected by an expert panel as associated with medically actionable genetic disorders that may be undiagnosed in adults. The resulting classifications were compared to classifications from other clinical and research genetic testing laboratories, as well as with in silico pathogenicity scores. Among European-ancestry participants, 30 of 4300 (0.7%) had a pathogenic SNV and six (0.1%) had a disruptive variant that was expected to be pathogenic, whereas 52 (1.2%) had likely pathogenic SNVs. For African-ancestry participants, six of 2203 (0.3%) had a pathogenic SNV and six (0.3%) had an expected pathogenic disruptive variant, whereas 13 (0.6%) had likely pathogenic SNVs. Genomic Evolutionary Rate Profiling mammalian conservation score and the Combined Annotation Dependent Depletion summary score of conservation, substitution, regulation, and other evidence were compared across pathogenicity assignments and appear to have utility in variant classification. This work provides a refined estimate of the burden of adult onset, medically actionable incidental findings expected from exome sequencing, highlights challenges in variant classification, and demonstrates the need for a better curated variant interpretation knowledge base.


Subject(s)
Exome , Genomics , Incidental Findings , Adult , Black People/genetics , Female , Gene Frequency , Genes, Dominant , Genetic Association Studies , Genetic Testing , Genome, Human , Genomics/methods , High-Throughput Nucleotide Sequencing , Humans , Male , Phenotype , Polymorphism, Single Nucleotide , White People/genetics
7.
Mol Cell ; 37(3): 333-43, 2010 Feb 12.
Article in English | MEDLINE | ID: mdl-20159553

ABSTRACT

Saccharomyces WEE1 (Swe1), the only "true" tyrosine kinase in budding yeast, is an Hsp90 client protein. Here we show that Swe1(Wee1) phosphorylates a conserved tyrosine residue (Y24 in yeast Hsp90 and Y38 in human Hsp90alpha) in the N domain of Hsp90. Phosphorylation is cell-cycle associated and modulates the ability of Hsp90 to chaperone a selected clientele, including v-Src and several other kinases. Nonphosphorylatable mutants have normal ATPase activity, support yeast viability, and productively chaperone the Hsp90 client glucocorticoid receptor. Deletion of SWE1 in yeast increases Hsp90 binding to its inhibitor geldanamycin, and pharmacologic inhibition/silencing of Wee1 sensitizes cancer cells to Hsp90 inhibitor-induced apoptosis. These findings demonstrate that Hsp90 chaperoning of distinct client proteins is differentially regulated by specific posttranslational modification of a unique subcellular pool of the chaperone, and they provide a strategy to increase the cellular potency of Hsp90 inhibitors.


Subject(s)
Cell Cycle Proteins/physiology , HSP90 Heat-Shock Proteins/metabolism , Protein-Tyrosine Kinases/physiology , Saccharomyces cerevisiae Proteins/physiology , Tyrosine/metabolism , Cell Cycle Proteins/antagonists & inhibitors , Cell Cycle Proteins/genetics , Cell Line, Tumor , Dimerization , HSP90 Heat-Shock Proteins/physiology , Humans , Nuclear Proteins/antagonists & inhibitors , Nuclear Proteins/genetics , Nuclear Proteins/physiology , Phosphorylation , Proteasome Endopeptidase Complex/metabolism , Protein-Tyrosine Kinases/antagonists & inhibitors , Protein-Tyrosine Kinases/genetics , RNA Interference , Saccharomyces cerevisiae Proteins/antagonists & inhibitors , Saccharomyces cerevisiae Proteins/genetics , Ubiquitination
8.
Am J Hum Genet ; 93(4): 631-40, 2013 Oct 03.
Article in English | MEDLINE | ID: mdl-24055113

ABSTRACT

The incorporation of genomics into medicine is stimulating interest on the return of incidental findings (IFs) from exome and genome sequencing. However, no large-scale study has yet estimated the number of expected actionable findings per individual; therefore, we classified actionable pathogenic single-nucleotide variants in 500 European- and 500 African-descent participants randomly selected from the National Heart, Lung, and Blood Institute Exome Sequencing Project. The 1,000 individuals were screened for variants in 114 genes selected by an expert panel for their association with medically actionable genetic conditions possibly undiagnosed in adults. Among the 1,000 participants, 585 instances of 239 unique variants were identified as disease causing in the Human Gene Mutation Database (HGMD). The primary literature supporting the variants' pathogenicity was reviewed. Of the identified IFs, only 16 unique autosomal-dominant variants in 17 individuals were assessed to be pathogenic or likely pathogenic, and one participant had two pathogenic variants for an autosomal-recessive disease. Furthermore, one pathogenic and four likely pathogenic variants not listed as disease causing in HGMD were identified. These data can provide an estimate of the frequency (∼3.4% for European descent and ∼1.2% for African descent) of the high-penetrance actionable pathogenic or likely pathogenic variants in adults. The 23 participants with pathogenic or likely pathogenic variants were disproportionately of European (17) versus African (6) descent. The process of classifying these variants underscores the need for a more comprehensive and diverse centralized resource to provide curated information on pathogenicity for clinical use to minimize health disparities in genomic medicine.


Subject(s)
Disease/genetics , Exome , Genetic Predisposition to Disease , Incidental Findings , Polymorphism, Single Nucleotide , Databases, Genetic , Gene Frequency , Humans , Penetrance
9.
Am J Med Genet A ; 170A(5): 1196-201, 2016 May.
Article in English | MEDLINE | ID: mdl-26789280

ABSTRACT

High quality information is critical for informed decision-making in pregnancy following a prenatal diagnosis of sex chromosome aneuploidy. The goal of this study was to define the spectrum of outcomes in patients with prenatally diagnosed 45,X/46,XX mosaic Turner syndrome in order to provide a better basis for genetic counseling at the time of intrauterine diagnosis. Phenotype data for twenty-five patients with prenatally diagnosed 45,X/46,XX mosaicism were collected by retrospective chart review and, when possible, semi-structured telephone interview. Existing data from a cohort of 58 patients with postnatally diagnosed 45,X/46,XX mosaicism were used for comparison. Relative to those diagnosed postnatally, prenatal patients were more likely to have normal growth and normal secondary sexual development, less likely to manifest distinctive Turner syndrome features such as nuchal webbing and edema, and had significantly fewer renal defects. These differences underscore the need for a nuanced approach to prenatal counseling in cases of 45,X/46,XX mosaicism.


Subject(s)
Aneuploidy , Genetic Counseling , Mosaicism , Turner Syndrome/genetics , Adolescent , Adult , Child , Child, Preschool , Female , Humans , Infant , Karyotyping , Male , Pregnancy , Pregnancy Outcome , Prenatal Diagnosis , Sex Chromosomes/genetics , Turner Syndrome/diagnosis , Turner Syndrome/pathology
10.
Article in English | MEDLINE | ID: mdl-31624069

ABSTRACT

Genome sequencing was performed on matched normal and tumor tissue from a 6.5-yr-old boy with a diagnosis of recurrent medulloblastoma. A pathogenic heterozygous c.432+1G>A canonical splice donor site variant in GNAS was detected on analysis of blood DNA. Analysis of tumor DNA showed the same splice variant along with copy-neutral loss of heterozygosity on Chromosome 20 encompassing GNAS, consistent with predicted biallelic loss of GNAS in the tumor specimen. This case strengthens the evidence implicating GNAS as a tumor-suppressor gene in medulloblastoma and highlights a scenario in which therapeutics targeting the cAMP pathway may be of great utility.


Subject(s)
Chromogranins/genetics , GTP-Binding Protein alpha Subunits, Gs/genetics , Medulloblastoma/genetics , Alleles , Brain Neoplasms/genetics , Cerebellar Neoplasms/genetics , Child , Chromogranins/metabolism , GTP-Binding Protein alpha Subunits, Gs/metabolism , Heterozygote , Humans , Male , Medulloblastoma/metabolism
11.
Genome Med ; 11(1): 48, 2019 07 26.
Article in English | MEDLINE | ID: mdl-31349857

ABSTRACT

BACKGROUND: Although mosaic variation has been known to cause disease for decades, high-throughput sequencing technologies with the analytical sensitivity to consistently detect variants at reduced allelic fractions have only recently emerged as routine clinical diagnostic tests. To date, few systematic analyses of mosaic variants detected by diagnostic exome sequencing for diverse clinical indications have been performed. METHODS: To investigate the frequency, type, allelic fraction, and phenotypic consequences of clinically relevant somatic mosaic single nucleotide variants (SNVs) and characteristics of the corresponding genes, we retrospectively queried reported mosaic variants from a cohort of ~ 12,000 samples submitted for clinical exome sequencing (ES) at Baylor Genetics. RESULTS: We found 120 mosaic variants involving 107 genes, including 80 mosaic SNVs in proband samples and 40 in parental/grandparental samples. Average mosaic alternate allele fraction (AAF) detected in autosomes and in X-linked disease genes in females was 18.2% compared with 34.8% in X-linked disease genes in males. Of these mosaic variants, 74 variants (61.7%) were classified as pathogenic or likely pathogenic and 46 (38.3%) as variants of uncertain significance. Mosaic variants occurred in disease genes associated with autosomal dominant (AD) or AD/autosomal recessive (AR) (67/120, 55.8%), X-linked (33/120, 27.5%), AD/somatic (10/120, 8.3%), and AR (8/120, 6.7%) inheritance. Of note, 1.7% (2/120) of variants were found in genes in which only somatic events have been described. Nine genes had recurrent mosaic events in unrelated individuals which accounted for 18.3% (22/120) of all detected mosaic variants in this study. The proband group was enriched for mosaicism affecting Ras signaling pathway genes. CONCLUSIONS: In sum, an estimated 1.5% of all molecular diagnoses made in this cohort could be attributed to a mosaic variant detected in the proband, while parental mosaicism was identified in 0.3% of families analyzed. As ES design favors breadth over depth of coverage, this estimate of the prevalence of mosaic variants likely represents an underestimate of the total number of clinically relevant mosaic variants in our cohort.


Subject(s)
Exome Sequencing , Genetic Predisposition to Disease , Genome-Wide Association Study , Mosaicism , Polymorphism, Single Nucleotide , Alleles , Female , Genetic Variation , Genome-Wide Association Study/methods , Humans , Male
12.
JAMA Pediatr ; 171(12): e173438, 2017 12 04.
Article in English | MEDLINE | ID: mdl-28973083

ABSTRACT

Importance: While congenital malformations and genetic diseases are a leading cause of early infant death, to our knowledge, the contribution of single-gene disorders in this group is undetermined. Objective: To determine the diagnostic yield and use of clinical exome sequencing in critically ill infants. Design, Setting, and Participants: Clinical exome sequencing was performed for 278 unrelated infants within the first 100 days of life who were admitted to Texas Children's Hospital in Houston, Texas, during a 5-year period between December 2011 and January 2017. Exome sequencing types included proband exome, trio exome, and critical trio exome, a rapid genomic assay for seriously ill infants. Main Outcomes and Measures: Indications for testing, diagnostic yield of clinical exome sequencing, turnaround time, molecular findings, patient age at diagnosis, and effect on medical management among a group of critically ill infants who were suspected to have genetic disorders. Results: The mean (SEM) age for infants participating in the study was 28.5 (1.7) days; of these, the mean (SEM) age was 29.0 (2.2) days for infants undergoing proband exome sequencing, 31.5 (3.9) days for trio exome, and 22.7 (3.9) days for critical trio exome. Clinical indications for exome sequencing included a range of medical concerns. Overall, a molecular diagnosis was achieved in 102 infants (36.7%) by clinical exome sequencing, with relatively low yield for cardiovascular abnormalities. The diagnosis affected medical management for 53 infants (52.0%) and had a substantial effect on informed redirection of care, initiation of new subspecialist care, medication/dietary modifications, and furthering life-saving procedures in select patients. Critical trio exome sequencing revealed a molecular diagnosis in 32 of 63 infants (50.8%) at a mean (SEM) of 33.1 (5.6) days of life with a mean (SEM) turnaround time of 13.0 (0.4) days. Clinical care was altered by the diagnosis in 23 of 32 patients (71.9%). The diagnostic yield, patient age at diagnosis, and medical effect in the group that underwent critical trio exome sequencing were significantly different compared with the group who underwent regular exome testing. For deceased infants (n = 81), genetic disorders were molecularly diagnosed in 39 (48.1%) by exome sequencing, with implications for recurrence risk counseling. Conclusions and Relevance: Exome sequencing is a powerful tool for the diagnostic evaluation of critically ill infants with suspected monogenic disorders in the neonatal and pediatric intensive care units and its use has a notable effect on clinical decision making.


Subject(s)
Exome Sequencing/methods , Genetic Diseases, Inborn/diagnosis , Intensive Care Units, Pediatric , Adult , Critical Care/methods , Disease Management , Exome , Genetic Counseling/methods , Genetic Diseases, Inborn/genetics , Genetic Diseases, Inborn/therapy , Humans , Infant , Infant Care/methods , Infant, Newborn , Length of Stay/statistics & numerical data , Retrospective Studies , Texas
13.
Eur J Hum Genet ; 23(6): 761-5, 2015 Jun.
Article in English | MEDLINE | ID: mdl-25271087

ABSTRACT

Small RNAs (miRNA, siRNA, and piRNA) regulate gene expression through targeted destruction or translational repression of specific messenger RNA in a fundamental biological process called RNA interference (RNAi). The Argonaute proteins, which derive from a highly conserved family of genes found in almost all eukaryotes, are critical mediators of this process. Four AGO genes are present in humans, three of which (AGO 1, 3, and 4) reside in a cluster on chromosome 1p35p34. The effects of germline AGO variants or dosage alterations in humans are not known, however, prior studies have implicated dysregulation of the RNAi mechanism in the pathogenesis of several neurodevelopmental disorders. We describe five patients with hypotonia, poor feeding, and developmental delay who were found to have microdeletions of chromosomal region 1p34.3 encompassing the AGO1 and AGO3 genes. We postulate that haploinsufficiency of AGO1 and AGO3 leading to impaired RNAi may be responsible for the neurocognitive deficits present in these patients. However, additional studies with rigorous phenotypic characterization of larger cohorts of affected individuals and systematic investigation of the underlying molecular defects will be necessary to confirm this.


Subject(s)
Argonaute Proteins/genetics , Chromosome Deletion , Chromosomes, Human, Pair 1/genetics , Developmental Disabilities/genetics , Eukaryotic Initiation Factors/genetics , Muscle Hypotonia/genetics , Adolescent , Child , Child, Preschool , Developmental Disabilities/diagnosis , Female , Haploinsufficiency , Humans , Male , Muscle Hypotonia/diagnosis , Syndrome
14.
Neuro Oncol ; 17(3): 372-82, 2015 Mar.
Article in English | MEDLINE | ID: mdl-25140038

ABSTRACT

BACKGROUND: Periostin is a secreted matricellular protein critical for epithelial-mesenchymal transition and carcinoma metastasis. In glioblastoma, it is highly upregulated compared with normal brain, and existing reports indicate potential prognostic and functional importance in glioma. However, the clinical implications of periostin expression and function related to its therapeutic potential have not been fully explored. METHODS: Periostin expression levels and patterns were examined in human glioma cells and tissues by quantitative real-time PCR and immunohistochemistry and correlated with glioma grade, type, recurrence, and survival. Functional assays determined the impact of altering periostin expression and function on cell invasion, migration, adhesion, and glioma stem cell activity and tumorigenicity. The prognostic and functional relevance of periostin and its associated genes were analyzed using the TCGA and REMBRANDT databases and paired recurrent glioma samples. RESULTS: Periostin expression levels correlated directly with tumor grade and recurrence, and inversely with survival, in all grades of adult human glioma. Stromal deposition of periostin was detected only in grade IV gliomas. Secreted periostin promoted glioma cell invasion and adhesion, and periostin knockdown markedly impaired survival of xenografted glioma stem cells. Interactions with αvß3 and αvß5 integrins promoted adhesion and migration, and periostin abrogated cytotoxicity of the αvß3/ß5 specific inhibitor cilengitide. Periostin-associated gene signatures, predominated by matrix and secreted proteins, corresponded to patient prognosis and functional motifs related to increased malignancy. CONCLUSION: Periostin is a robust marker of glioma malignancy and potential tumor recurrence. Abrogation of glioma stem cell tumorigenicity after periostin inhibition provides support for exploring the therapeutic impact of targeting periostin.


Subject(s)
Biomarkers, Tumor/metabolism , Brain Neoplasms/metabolism , Cell Adhesion Molecules/metabolism , Glioma/metabolism , Brain Neoplasms/mortality , Brain Neoplasms/pathology , Brain Neoplasms/prevention & control , Cell Adhesion , Cell Adhesion Molecules/antagonists & inhibitors , Cell Line, Tumor , Glioma/mortality , Glioma/pathology , Glioma/prevention & control , Humans , Integrins/metabolism , Kaplan-Meier Estimate , Neoplasm Grading , Neoplasm Invasiveness , Up-Regulation
SELECTION OF CITATIONS
SEARCH DETAIL