Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
1.
Cell ; 187(4): 981-998.e25, 2024 Feb 15.
Article in English | MEDLINE | ID: mdl-38325365

ABSTRACT

The female reproductive tract (FRT) undergoes extensive remodeling during reproductive cycling. This recurrent remodeling and how it shapes organ-specific aging remains poorly explored. Using single-cell and spatial transcriptomics, we systematically characterized morphological and gene expression changes occurring in ovary, oviduct, uterus, cervix, and vagina at each phase of the mouse estrous cycle, during decidualization, and into aging. These analyses reveal that fibroblasts play central-and highly organ-specific-roles in FRT remodeling by orchestrating extracellular matrix (ECM) reorganization and inflammation. Our results suggest a model wherein recurrent FRT remodeling over reproductive lifespan drives the gradual, age-related development of fibrosis and chronic inflammation. This hypothesis was directly tested using chemical ablation of cycling, which reduced fibrotic accumulation during aging. Our atlas provides extensive detail into how estrus, pregnancy, and aging shape the organs of the female reproductive tract and reveals the unexpected cost of the recurrent remodeling required for reproduction.


Subject(s)
Aging , Genitalia, Female , Animals , Female , Mice , Pregnancy , Genitalia, Female/cytology , Genitalia, Female/metabolism , Inflammation/metabolism , Uterus/cytology , Vagina/cytology , Single-Cell Analysis
2.
Diabetologia ; 59(8): 1769-77, 2016 08.
Article in English | MEDLINE | ID: mdl-27209464

ABSTRACT

AIMS/HYPOTHESIS: Adipose tissue dysfunction is a prime risk factor for the development of metabolic disease. Bone morphogenetic proteins (BMPs) have previously been implicated in adipocyte formation. Here, we investigate the role of BMP signalling in adipose tissue health and systemic glucose homeostasis. METHODS: We employed the Cre/loxP system to generate mouse models with conditional ablation of BMP receptor 1A in differentiating and mature adipocytes, as well as tissue-resident myeloid cells. Metabolic variables were assessed by glucose and insulin tolerance testing, insulin-stimulated glucose uptake and gene expression analysis. RESULTS: Conditional deletion of Bmpr1a using the aP2 (also known as Fabp4)-Cre strain resulted in a complex phenotype. Knockout mice were clearly resistant to age-related impairment of insulin sensitivity during normal and high-fat-diet feeding and showed significantly improved insulin-stimulated glucose uptake in brown adipose tissue and skeletal muscle. Moreover, knockouts displayed significant reduction of variables of adipose tissue inflammation. Deletion of Bmpr1a in myeloid cells had no impact on insulin sensitivity, while ablation of Bmpr1a in mature adipocytes partially recapitulated the initial phenotype from aP2-Cre driven deletion. Co-cultivation of macrophages with pre-adipocytes lacking Bmpr1a markedly reduced expression of proinflammatory genes. CONCLUSIONS/INTERPRETATION: Our findings show that altered BMP signalling in adipose tissue affects the tissue's metabolic properties and systemic insulin resistance by altering the pattern of immune cell infiltration. The phenotype is due to ablation of Bmpr1a specifically in pre-adipocytes and maturing adipocytes rather than an immune cell-autonomous effect. Mechanistically, we provide evidence for a BMP-mediated direct crosstalk between pre-adipocytes and macrophages.


Subject(s)
Adipose Tissue/metabolism , Bone Morphogenetic Protein Receptors, Type I/metabolism , Insulin Resistance/physiology , Adipocytes/metabolism , Animals , Bone Morphogenetic Protein Receptors, Type I/genetics , Diet, High-Fat/adverse effects , Fatty Acids, Nonesterified/blood , Glucose/metabolism , Insulin/blood , Insulin Resistance/genetics , Interleukin-6/blood , Mice , Mice, Knockout , Tumor Necrosis Factor-alpha/blood
3.
Mol Cell Biol ; 38(12)2018 06 15.
Article in English | MEDLINE | ID: mdl-29581184

ABSTRACT

The transcription factor GATA2 is required for expansion and differentiation of hematopoietic stem cells (HSCs). In mesenchymal stem cells (MSCs), GATA2 blocks adipogenesis, but its biological relevance and underlying genomic events are unknown. We report a dual function of GATA2 in bone homeostasis. GATA2 in MSCs binds near genes involved in skeletal system development and colocalizes with motifs for FOX and HOX transcription factors, known regulators of skeletal development. Ectopic GATA2 blocks osteoblastogenesis by interfering with SMAD1/5/8 activation. MSC-specific deletion of GATA2 in mice increases the numbers and differentiation capacity of bone-derived precursors, resulting in elevated bone formation. Surprisingly, MSC-specific GATA2 deficiency impairs the trabecularization and mechanical strength of bone, involving reduced MSC expression of the osteoclast inhibitor osteoprotegerin and increased osteoclast numbers. Thus, GATA2 affects bone turnover via MSC-autonomous and indirect effects. By regulating bone trabecularization, GATA2 expression in the osteogenic lineage may contribute to the anatomical and cellular microenvironment of the HSC niche required for hematopoiesis.


Subject(s)
Bone and Bones/metabolism , GATA2 Transcription Factor/genetics , Gene Expression Regulation, Developmental/genetics , Hematopoietic Stem Cells/cytology , Mesenchymal Stem Cells/cytology , Osteogenesis/genetics , 3T3 Cells , Animals , Binding Sites/genetics , Bone Marrow Cells/metabolism , Cell Differentiation/genetics , Cell Line , Cellular Microenvironment/genetics , Fractures, Bone/genetics , GATA2 Deficiency/genetics , GATA2 Deficiency/pathology , Male , Mice , Mice, Inbred C3H , Mice, Inbred C57BL , Nuclear Proteins/metabolism , Smad1 Protein/metabolism , Smad5 Protein/metabolism , Smad8 Protein/metabolism , Transcription Factors/metabolism
4.
Nat Commun ; 8(1): 384, 2017 08 30.
Article in English | MEDLINE | ID: mdl-28855500

ABSTRACT

The liver integrates multiple metabolic pathways to warrant systemic energy homeostasis. An excessive lipogenic flux due to chronic dietary stimulation contributes to the development of hepatic steatosis, dyslipidemia and hyperglycemia. Here we show that the oxidoreductase retinol saturase (RetSat) is involved in the development of fatty liver. Hepatic RetSat expression correlates with steatosis and serum triglycerides (TGs) in humans. Liver-specific depletion of RetSat in dietary obese mice lowers hepatic and circulating TGs and normalizes hyperglycemia. Mechanistically, RetSat depletion reduces the activity of carbohydrate response element binding protein (ChREBP), a cellular hexose-phosphate sensor and inducer of lipogenesis. Defects upon RetSat depletion are rescued by ectopic expression of ChREBP but not by its putative enzymatic product 13,14-dihydroretinol, suggesting that RetSat affects hepatic glucose sensing independent of retinol conversion. Thus, RetSat is a critical regulator of liver metabolism functioning upstream of ChREBP. Pharmacological inhibition of liver RetSat may represent a therapeutic approach for steatosis.Fatty liver is one of the major features of metabolic syndrome and its development is associated with deregulation of systemic lipid and glucose homeostasis. Here Heidenreich et al. show that retinol saturase is implicated in hepatic lipid metabolism by regulating the activity of the transcription factor ChREBP.


Subject(s)
Basic Helix-Loop-Helix Leucine Zipper Transcription Factors/metabolism , Fatty Liver/metabolism , Liver/metabolism , Oxidoreductases Acting on CH-CH Group Donors/physiology , Animals , Glucose/metabolism , Hepatocytes/metabolism , Humans , Lipid Metabolism , Male , Mice , Mice, Inbred C57BL , Oxidoreductases Acting on CH-CH Group Donors/genetics , Oxidoreductases Acting on CH-CH Group Donors/metabolism , Triglycerides/blood
5.
Endocrinology ; 156(11): 4008-19, 2015 Nov.
Article in English | MEDLINE | ID: mdl-26181104

ABSTRACT

Reduced de novo lipogenesis in adipose tissue, often observed in obese individuals, is thought to contribute to insulin resistance. Besides trapping excess glucose and providing for triglycerides and energy storage, endogenously synthesized lipids can function as potent signaling molecules. Indeed, several specific lipids and their molecular targets that mediate insulin sensitivity have been recently identified. Here, we report that carbohydrate-response element-binding protein (ChREBP), a transcriptional inducer of glucose use and de novo lipogenesis, controls the activity of the adipogenic master regulator peroxisome proliferator-activated receptor (PPAR)γ. Expression of constitutive-active ChREBP in precursor cells activated endogenous PPARγ and promoted adipocyte differentiation. Intriguingly, ChREBP-constitutive-active ChREBP expression induced PPARγ activity in a fatty acid synthase-dependent manner and by trans-activating the PPARγ ligand-binding domain. Reducing endogenous ChREBP activity by either small interfering RNA-mediated depletion, exposure to low-glucose concentrations, or expressing a dominant-negative ChREBP impaired differentiation. In adipocytes, ChREBP regulated the expression of PPARγ target genes, in particular those involved in thermogenesis, similar to synthetic PPARγ ligands. In summary, our data suggest that ChREBP controls the generation of endogenous fatty acid species that activate PPARγ. Thus, increasing ChREBP activity in adipose tissue by therapeutic interventions may promote insulin sensitivity through PPARγ.


Subject(s)
Adipocytes/metabolism , Cell Differentiation , Lipogenesis , Nuclear Proteins/metabolism , PPAR gamma/metabolism , Transcription Factors/metabolism , 3T3-L1 Cells , Adipocytes/cytology , Adipocytes/drug effects , Animals , Basic Helix-Loop-Helix Leucine Zipper Transcription Factors , Cell Line , Gene Expression , Glucose/metabolism , Glucose/pharmacology , HEK293 Cells , Humans , Immunoblotting , Mesenchymal Stem Cells/metabolism , Mice , Nuclear Proteins/genetics , Protein Isoforms/genetics , Protein Isoforms/metabolism , RNA Interference , Reverse Transcriptase Polymerase Chain Reaction , Transcription Factors/genetics
6.
Diabetes ; 63(3): 1048-57, 2014 Mar.
Article in English | MEDLINE | ID: mdl-24222346

ABSTRACT

Reduced expression of the INDY (I'm not dead yet) tricarboxylate carrier increased the life span in different species by mechanisms akin to caloric restriction. Mammalian INDY homolog (mIndy, SLC13A5) gene expression seems to be regulated by hormonal and/or nutritional factors. The underlying mechanisms are still unknown. The current study revealed that mIndy expression and [(14)C]-citrate uptake was induced by physiological concentrations of glucagon via a cAMP-dependent and cAMP-responsive element-binding protein (CREB)-dependent mechanism in primary rat hepatocytes. The promoter sequence of mIndy located upstream of the most frequent transcription start site was determined by 5'-rapid amplification of cDNA ends. In silico analysis identified a CREB-binding site within this promoter fragment of mIndy. Functional relevance for the CREB-binding site was demonstrated with reporter gene constructs that were induced by CREB activation when under the control of a fragment of a wild-type promoter, whereas promoter activity was lost after site-directed mutagenesis of the CREB-binding site. Moreover, CREB binding to this promoter element was confirmed by chromatin immunoprecipitation in rat liver. In vivo studies revealed that mIndy was induced in livers of fasted as well as in high-fat-diet-streptozotocin diabetic rats, in which CREB is constitutively activated. mIndy induction was completely prevented when CREB was depleted in these rats by antisense oligonucleotides. Together, these data suggest that mIndy is a CREB-dependent glucagon target gene that is induced in fasting and in type 2 diabetes. Increased mIndy expression might contribute to the metabolic consequences of diabetes in the liver.


Subject(s)
Cyclic AMP Response Element-Binding Protein/physiology , Diabetes Mellitus, Type 2/metabolism , Gene Expression Regulation , Symporters/genetics , Animals , Chromatin Immunoprecipitation , Cyclic AMP/physiology , Glucagon/pharmacology , Hep G2 Cells , Hepatocytes/metabolism , Humans , Male , Promoter Regions, Genetic , Rats , Rats, Wistar
7.
Mol Cell Biol ; 33(20): 4068-82, 2013 Oct.
Article in English | MEDLINE | ID: mdl-23959802

ABSTRACT

Retinoids are vitamin A (retinol) derivatives and complex regulators of adipogenesis by activating specific nuclear receptors, including the retinoic acid receptor (RAR) and retinoid X receptor (RXR). Circulating retinol-binding protein 4 (RBP4) and its membrane receptor STRA6 coordinate cellular retinol uptake. It is unknown whether retinol levels and the activity of RAR and RXR in adipocyte precursors are linked via RBP4/STRA6. Here, we show that STRA6 is expressed in precursor cells and, dictated by the apo- and holo-RBP4 isoforms, mediates bidirectional retinol transport that controls RARα activity and subsequent adipocyte differentiation. Mobilization of retinoid stores in mice by inducing RBP4 secretion from the liver activated RARα signaling in the precursor cell containing the stromal-vascular fraction of adipose tissue. Retinol-loaded holo-RBP4 blocked adipocyte differentiation of cultured precursors by activating RARα. Remarkably, retinol-free apo-RBP4 triggered retinol efflux that reduced cellular retinoids, RARα activity, and target gene expression and enhanced adipogenesis synergistically with ectopic STRA6. Thus, STRA6 in adipocyte precursor cells links nuclear RARα activity to the circulating RBP4 isoforms, whose ratio in obese mice was shifted toward limiting the adipogenic potential of their precursors. This novel cross talk identifies a retinol-dependent metabolic function of RBP4 that may have important implications for the treatment of obesity.


Subject(s)
Adipocytes/metabolism , Adipose Tissue/metabolism , Membrane Proteins/metabolism , Obesity/metabolism , Receptors, Retinoic Acid/metabolism , Retinol-Binding Proteins, Plasma/metabolism , Vitamin A/blood , 3T3-L1 Cells , Adipocytes/cytology , Adipogenesis/genetics , Adipose Tissue/cytology , Animals , Cell Differentiation , Gene Expression Regulation , Homeostasis , Liver/cytology , Liver/metabolism , Male , Membrane Proteins/genetics , Mice , Mice, Transgenic , Obesity/genetics , Obesity/pathology , Receptors, Retinoic Acid/genetics , Retinoic Acid Receptor alpha , Retinoid X Receptors/genetics , Retinoid X Receptors/metabolism , Retinol-Binding Proteins, Plasma/genetics , Signal Transduction
SELECTION OF CITATIONS
SEARCH DETAIL