Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
1.
Genome Med ; 15(1): 29, 2023 05 01.
Article in English | MEDLINE | ID: mdl-37127652

ABSTRACT

BACKGROUND: Medulloblastoma (MB) is a malignant tumour of the cerebellum which can be classified into four major subgroups based on gene expression and genomic features. Single-cell transcriptome studies have defined the cellular states underlying each MB subgroup; however, the spatial organisation of these diverse cell states and how this impacts response to therapy remains to be determined. METHODS: Here, we used spatially resolved transcriptomics to define the cellular diversity within a sonic hedgehog (SHH) patient-derived model of MB and show that cells specific to a transcriptional state or spatial location are pivotal for CDK4/6 inhibitor, Palbociclib, treatment response. We integrated spatial gene expression with histological annotation and single-cell gene expression data from MB, developing an analysis strategy to spatially map cell type responses within the hybrid system of human and mouse cells and their interface within an intact brain tumour section. RESULTS: We distinguish neoplastic and non-neoplastic cells within tumours and from the surrounding cerebellar tissue, further refining pathological annotation. We identify a regional response to Palbociclib, with reduced proliferation and induced neuronal differentiation in both treated tumours. Additionally, we resolve at a cellular resolution a distinct tumour interface where the tumour contacts neighbouring mouse brain tissue consisting of abundant astrocytes and microglia and continues to proliferate despite Palbociclib treatment. CONCLUSIONS: Our data highlight the power of using spatial transcriptomics to characterise the response of a tumour to a targeted therapy and provide further insights into the molecular and cellular basis underlying the response and resistance to CDK4/6 inhibitors in SHH MB.


Subject(s)
Cerebellar Neoplasms , Medulloblastoma , Animals , Humans , Mice , Cell Differentiation , Cerebellar Neoplasms/metabolism , Cyclin-Dependent Kinase 4/genetics , Cyclin-Dependent Kinase 4/metabolism , Hedgehog Proteins/genetics , Hedgehog Proteins/metabolism , Medulloblastoma/metabolism , Transcriptome , Cyclin-Dependent Kinase 6/antagonists & inhibitors
2.
J Exp Med ; 218(5)2021 05 03.
Article in English | MEDLINE | ID: mdl-33656514

ABSTRACT

Vincristine is an important component of many regimens used for pediatric and adult malignancies, but it causes a dose-limiting sensorimotor neuropathy for which there is no effective treatment. This study aimed to delineate the neuro-inflammatory mechanisms contributing to the development of mechanical allodynia and gait disturbances in a murine model of vincristine-induced neuropathy, as well as to identify novel treatment approaches. Here, we show that vincristine-induced peripheral neuropathy is driven by activation of the NLRP3 inflammasome and subsequent release of interleukin-1ß from macrophages, with mechanical allodynia and gait disturbances significantly reduced in knockout mice lacking NLRP3 signaling pathway components, or after treatment with the NLRP3 inhibitor MCC950. Moreover, treatment with the IL-1 receptor antagonist anakinra prevented the development of vincristine-induced neuropathy without adversely affecting chemotherapy efficacy or tumor progression in patient-derived medulloblastoma xenograph models. These results detail the neuro-inflammatory mechanisms leading to vincristine-induced peripheral neuropathy and suggest that repurposing anakinra may be an effective co-treatment strategy to prevent vincristine-induced peripheral neuropathy.


Subject(s)
Hyperalgesia/genetics , Interleukin-1beta/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/genetics , Peripheral Nervous System Diseases/genetics , Xenograft Model Antitumor Assays/methods , Animals , Antineoplastic Agents/administration & dosage , Antirheumatic Agents/administration & dosage , Cisplatin/administration & dosage , Furans/administration & dosage , Humans , Hyperalgesia/chemically induced , Hyperalgesia/drug therapy , Indenes/administration & dosage , Inflammasomes/drug effects , Inflammasomes/genetics , Inflammasomes/metabolism , Interleukin 1 Receptor Antagonist Protein/administration & dosage , Mice, Inbred C57BL , Mice, Inbred NOD , Mice, Knockout , Mice, SCID , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Oxaliplatin/administration & dosage , Peripheral Nervous System Diseases/chemically induced , Peripheral Nervous System Diseases/drug therapy , Sulfonamides/administration & dosage , Vincristine
3.
Genome Med ; 13(1): 103, 2021 06 21.
Article in English | MEDLINE | ID: mdl-34154646

ABSTRACT

BACKGROUND: Medulloblastoma (MB) is the most common malignant paediatric brain tumour and a leading cause of cancer-related mortality and morbidity. Existing treatment protocols are aggressive in nature resulting in significant neurological, intellectual and physical disabilities for the children undergoing treatment. Thus, there is an urgent need for improved, targeted therapies that minimize these harmful side effects. METHODS: We identified candidate drugs for MB using a network-based systems-pharmacogenomics approach: based on results from a functional genomics screen, we identified a network of interactions implicated in human MB growth regulation. We then integrated drugs and their known mechanisms of action, along with gene expression data from a large collection of medulloblastoma patients to identify drugs with potential to treat MB. RESULTS: Our analyses identified drugs targeting CDK4, CDK6 and AURKA as strong candidates for MB; all of these genes are well validated as drug targets in other tumour types. We also identified non-WNT MB as a novel indication for drugs targeting TUBB, CAD, SNRPA, SLC1A5, PTPRS, P4HB and CHEK2. Based upon these analyses, we subsequently demonstrated that one of these drugs, the new microtubule stabilizing agent, ixabepilone, blocked tumour growth in vivo in mice bearing patient-derived xenograft tumours of the Sonic Hedgehog and Group 3 subtype, providing the first demonstration of its efficacy in MB. CONCLUSIONS: Our findings confirm that this data-driven systems pharmacogenomics strategy is a powerful approach for the discovery and validation of novel therapeutic candidates relevant to MB treatment, and along with data validating ixabepilone in PDX models of the two most aggressive subtypes of medulloblastoma, we present the network analysis framework as a resource for the field.


Subject(s)
Antineoplastic Agents/pharmacology , Biomarkers, Tumor , Cerebellar Neoplasms/etiology , Drug Development , Medulloblastoma/etiology , Pharmacogenetics/methods , Animals , Antineoplastic Agents/therapeutic use , Cerebellar Neoplasms/drug therapy , Cerebellar Neoplasms/metabolism , Computational Biology/methods , Disease Models, Animal , Drug Evaluation, Preclinical , Gene Expression Profiling , Gene Expression Regulation, Neoplastic/drug effects , Gene Regulatory Networks , Humans , Medulloblastoma/drug therapy , Medulloblastoma/metabolism , Mice , Mice, Transgenic , Protein Interaction Mapping , Protein Interaction Maps , Systems Biology/methods , Transcriptome , Xenograft Model Antitumor Assays
SELECTION OF CITATIONS
SEARCH DETAIL