Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 29
Filter
1.
Cell ; 159(4): 714-5, 2014 Nov 06.
Article in English | MEDLINE | ID: mdl-25417147

ABSTRACT

Li et al. demonstrate that a single interneuron can regulate analog- and digital-like behaviors guided by two different postsynaptic neurons. Releasing a single neurotransmitter onto downstream neurons that express receptors with distinct biophysical properties enables a small set of neurons to direct a range of functional responses.


Subject(s)
Caenorhabditis elegans/physiology , Interneurons/physiology , Animals
2.
Learn Mem ; 31(5)2024 May.
Article in English | MEDLINE | ID: mdl-38876485

ABSTRACT

The common fruit fly Drosophila melanogaster provides a powerful platform to investigate the genetic, molecular, cellular, and neural circuit mechanisms of behavior. Research in this model system has shed light on multiple aspects of brain physiology and behavior, from fundamental neuronal function to complex behaviors. A major anatomical region that modulates complex behaviors is the mushroom body (MB). The MB integrates multimodal sensory information and is involved in behaviors ranging from sensory processing/responses to learning and memory. Many genes that underlie brain disorders are conserved, from flies to humans, and studies in Drosophila have contributed significantly to our understanding of the mechanisms of brain disorders. Genetic mutations that mimic human diseases-such as Fragile X syndrome, neurofibromatosis type 1, Parkinson's disease, and Alzheimer's disease-affect MB structure and function, altering behavior. Studies dissecting the effects of disease-causing mutations in the MB have identified key pathological mechanisms, and the development of a complete connectome promises to add a comprehensive anatomical framework for disease modeling. Here, we review Drosophila models of human neurodevelopmental and neurodegenerative disorders via the effects of their underlying mutations on MB structure, function, and the resulting behavioral alterations.


Subject(s)
Disease Models, Animal , Mushroom Bodies , Neurodegenerative Diseases , Neurodevelopmental Disorders , Animals , Mushroom Bodies/physiology , Neurodegenerative Diseases/physiopathology , Neurodegenerative Diseases/genetics , Neurodegenerative Diseases/pathology , Neurodevelopmental Disorders/genetics , Neurodevelopmental Disorders/physiopathology , Drosophila melanogaster , Humans , Drosophila
3.
PLoS Biol ; 19(10): e3001412, 2021 10.
Article in English | MEDLINE | ID: mdl-34613972

ABSTRACT

Alzheimer disease (AD) is one of the main causes of age-related dementia and neurodegeneration. However, the onset of the disease and the mechanisms causing cognitive defects are not well understood. Aggregation of amyloidogenic peptides is a pathological hallmark of AD and is assumed to be a central component of the molecular disease pathways. Pan-neuronal expression of Aß42Arctic peptides in Drosophila melanogaster results in learning and memory defects. Surprisingly, targeted expression to the mushroom bodies, a center for olfactory memories in the fly brain, does not interfere with learning but accelerates forgetting. We show here that reducing neuronal excitability either by feeding Levetiracetam or silencing of neurons in the involved circuitry ameliorates the phenotype. Furthermore, inhibition of the Rac-regulated forgetting pathway could rescue the Aß42Arctic-mediated accelerated forgetting phenotype. Similar effects are achieved by increasing sleep, a critical regulator of neuronal homeostasis. Our results provide a functional framework connecting forgetting signaling and sleep, which are critical for regulating neuronal excitability and homeostasis and are therefore a promising mechanism to modulate forgetting caused by toxic Aß peptides.


Subject(s)
Amyloid beta-Peptides/toxicity , Dopamine/metabolism , Drosophila melanogaster/physiology , Memory/physiology , Neurons/physiology , Sleep/physiology , Animals , Brain/metabolism , Drosophila melanogaster/drug effects , Memory/drug effects , Mushroom Bodies/drug effects , Mushroom Bodies/metabolism , Neurons/drug effects
4.
PLoS Genet ; 16(7): e1008920, 2020 07.
Article in English | MEDLINE | ID: mdl-32697780

ABSTRACT

Neurofibromatosis type 1 is a monogenetic disorder that predisposes individuals to tumor formation and cognitive and behavioral symptoms. The neuronal circuitry and developmental events underlying these neurological symptoms are unknown. To better understand how mutations of the underlying gene (NF1) drive behavioral alterations, we have examined grooming in the Drosophila neurofibromatosis 1 model. Mutations of the fly NF1 ortholog drive excessive grooming, and increased grooming was observed in adults when Nf1 was knocked down during development. Furthermore, intact Nf1 Ras GAP-related domain signaling was required to maintain normal grooming. The requirement for Nf1 was distributed across neuronal circuits, which were additive when targeted in parallel, rather than mapping to discrete microcircuits. Overall, these data suggest that broadly-distributed alterations in neuronal function during development, requiring intact Ras signaling, drive key Nf1-mediated behavioral alterations. Thus, global developmental alterations in brain circuits/systems function may contribute to behavioral phenotypes in neurofibromatosis type 1.


Subject(s)
Drosophila Proteins/genetics , Embryonic Development/genetics , Nerve Tissue Proteins/genetics , Neurofibromatosis 1/genetics , Neurons/metabolism , ras GTPase-Activating Proteins/genetics , Animals , Cognition/physiology , Disease Models, Animal , Drosophila melanogaster/genetics , Embryo, Nonmammalian , Gene Knockdown Techniques , Grooming/physiology , Humans , Mutation/genetics , Neurofibromatosis 1/pathology , Neurons/pathology
5.
Proc Natl Acad Sci U S A ; 115(3): E448-E457, 2018 01 16.
Article in English | MEDLINE | ID: mdl-29284750

ABSTRACT

Learning and memory rely on dopamine and downstream cAMP-dependent plasticity across diverse organisms. Despite the central role of cAMP signaling, it is not known how cAMP-dependent plasticity drives coherent changes in neuronal physiology that encode the memory trace, or engram. In Drosophila, the mushroom body (MB) is critically involved in olfactory classical conditioning, and cAMP signaling molecules are necessary and sufficient for normal memory in intrinsic MB neurons. To evaluate the role of cAMP-dependent plasticity in learning, we examined how cAMP manipulations and olfactory classical conditioning modulate olfactory responses in the MB with in vivo imaging. Elevating cAMP pharmacologically or optogenetically produced plasticity in MB neurons, altering their responses to odorants. Odor-evoked Ca2+ responses showed net facilitation across anatomical regions. At the single-cell level, neurons exhibited heterogeneous responses to cAMP elevation, suggesting that cAMP drives plasticity to discrete subsets of MB neurons. Olfactory appetitive conditioning enhanced MB odor responses, mimicking the cAMP-dependent plasticity in directionality and magnitude. Elevating cAMP to equivalent levels as appetitive conditioning also produced plasticity, suggesting that the cAMP generated during conditioning affects odor-evoked responses in the MB. Finally, we found that this plasticity was dependent on the Rutabaga type I adenylyl cyclase, linking cAMP-dependent plasticity to behavioral modification. Overall, these data demonstrate that learning produces robust cAMP-dependent plasticity in intrinsic MB neurons, which is biased toward naturalistic reward learning. This suggests that cAMP signaling may serve to modulate intrinsic MB responses toward salient stimuli.


Subject(s)
Conditioning, Classical/physiology , Cyclic AMP/physiology , Mushroom Bodies/physiology , Neuronal Plasticity/physiology , Smell/physiology , Animals , Drosophila/physiology , Drosophila Proteins/genetics , Drosophila Proteins/metabolism , Learning/physiology , Odorants
6.
J Neurogenet ; 34(1): 36-46, 2020 03.
Article in English | MEDLINE | ID: mdl-32043414

ABSTRACT

Recent years have witnessed significant progress in understanding how memories are encoded, from the molecular to the cellular and the circuit/systems levels. With a good compromise between brain complexity and behavioral sophistication, the fruit fly Drosophila melanogaster is one of the preeminent animal models of learning and memory. Here we review how memories are encoded in Drosophila, with a focus on short-term memory and an eye toward future directions. Forward genetic screens have revealed a large number of genes and transcripts necessary for learning and memory, some acting cell-autonomously. Further, the relative numerical simplicity of the fly brain has enabled the reverse engineering of learning circuits with remarkable precision, in some cases ascribing behavioral phenotypes to single neurons. Functional imaging and physiological studies have localized and parsed the plasticity that occurs during learning at some of the major loci. Connectomics projects are significantly expanding anatomical knowledge of the nervous system, filling out the roadmap for ongoing functional/physiological and behavioral studies, which are being accelerated by simultaneous tool development. These developments have provided unprecedented insight into the fundamental neural principles of learning, and lay the groundwork for deep understanding in the near future.


Subject(s)
Behavior, Animal/physiology , Drosophila melanogaster/physiology , Learning/physiology , Memory/physiology , Mushroom Bodies/physiology , Animals , Conditioning, Classical/physiology , Neural Pathways/physiology , Olfactory Perception/physiology
7.
J Neurosci ; 33(5): 2166-76a, 2013 Jan 30.
Article in English | MEDLINE | ID: mdl-23365252

ABSTRACT

Dopaminergic circuits modulate a wide variety of innate and learned behaviors in animals, including olfactory associative learning, arousal, and temperature-preference behavior. It is not known whether distinct or overlapping sets of dopaminergic neurons modulate these behaviors. Here, I have functionally characterized the dopaminergic circuits innervating the Drosophila mushroom body with in vivo calcium imaging and conditional silencing of genetically defined subsets of neurons. Distinct subsets of PPL1 dopaminergic neurons innervating the vertical lobes of the mushroom body responded to decreases in temperature, but not increases, with rapidly adapting bursts of activity. PAM neurons innervating the horizontal lobes did not respond to temperature shifts. Ablation of the antennae and maxillary palps reduced, but did not eliminate, the responses. Genetic silencing of dopaminergic neurons innervating the vertical mushroom body lobes substantially reduced behavioral cold avoidance, but silencing smaller subsets of these neurons had no effect. These data demonstrate that overlapping dopaminergic circuits encode a broadly distributed, asymmetric representation of temperature that overlays regions implicated previously in learning, memory, and forgetting. Thus, diverse behaviors engage overlapping sets of dopaminergic neurons that encode multimodal stimuli and innervate a single anatomical target, the mushroom body.


Subject(s)
Dopaminergic Neurons/physiology , Mushroom Bodies/physiology , Nerve Net/physiology , Smell/physiology , Thermosensing/physiology , Animals , Behavior, Animal/physiology , Drosophila , Temperature
8.
J Neurodev Disord ; 16(1): 49, 2024 Aug 31.
Article in English | MEDLINE | ID: mdl-39217323

ABSTRACT

Neurofibromatosis type 1 (OMIM 162200) affects ~ 1 in 3,000 individuals worldwide and is one of the most common monogenetic neurogenetic disorders that impacts brain function. The disorder affects various organ systems, including the central nervous system, resulting in a spectrum of clinical manifestations. Significant progress has been made in understanding the disorder's pathophysiology, yet gaps persist in understanding how the complex signaling and systemic interactions affect the disorder. Two features of the disorder are alterations in neuronal function and metabolism, and emerging evidence suggests a potential relationship between them. This review summarizes neurofibromatosis type 1 features and recent research findings on disease mechanisms, with an emphasis on neuronal and metabolic features.


Subject(s)
Neurofibromatosis 1 , Neurons , Neurofibromatosis 1/metabolism , Neurofibromatosis 1/physiopathology , Neurofibromatosis 1/complications , Humans , Neurons/metabolism , Brain/metabolism , Brain/physiopathology , Animals
9.
Nat Commun ; 15(1): 6873, 2024 Aug 11.
Article in English | MEDLINE | ID: mdl-39127721

ABSTRACT

Ribosomes are regulated by evolutionarily conserved ubiquitination/deubiquitination events. We uncover the role of the deubiquitinase OTUD6 in regulating global protein translation through deubiquitination of the RPS7/eS7 subunit on the free 40 S ribosome in vivo in Drosophila. Coimmunoprecipitation and enrichment of monoubiquitinated proteins from catalytically inactive OTUD6 flies reveal RPS7 as the ribosomal substrate. The 40 S protein RACK1 and E3 ligases CNOT4 and RNF10 function upstream of OTUD6 to regulate alkylation stress. OTUD6 interacts with RPS7 specifically on the free 40 S, and not on 43 S/48 S initiation complexes or the translating ribosome. Global protein translation levels are bidirectionally regulated by OTUD6 protein abundance. OTUD6 protein abundance is physiologically regulated in aging and in response to translational and alkylation stress. Thus, OTUD6 may promote translation initiation, the rate limiting step in protein translation, by titering the amount of 40 S ribosome that recycles.


Subject(s)
Drosophila Proteins , Protein Biosynthesis , Ribosomal Proteins , Ubiquitination , Animals , Ribosomal Proteins/metabolism , Ribosomal Proteins/genetics , Drosophila Proteins/metabolism , Drosophila Proteins/genetics , Drosophila melanogaster/metabolism , Drosophila melanogaster/genetics , Ribosomes/metabolism , Stress, Physiological , Ubiquitin-Protein Ligases/metabolism , Ubiquitin-Protein Ligases/genetics
10.
bioRxiv ; 2024 Aug 09.
Article in English | MEDLINE | ID: mdl-39149363

ABSTRACT

Genetic disorders such as neurofibromatosis type 1 increase vulnerability to cognitive and behavioral disorders, such as autism spectrum disorder and attention-deficit/hyperactivity disorder. Neurofibromatosis type 1 results from loss-of-function mutations in the neurofibromin gene and subsequent reduction in the neurofibromin protein (Nf1). While the mechanisms have yet to be fully elucidated, loss of Nf1 may alter neuronal circuit activity leading to changes in behavior and susceptibility to cognitive and behavioral comorbidities. Here we show that mutations decreasing Nf1 expression alter motor behaviors, impacting the patterning, prioritization, and behavioral state dependence in a Drosophila model of neurofibromatosis type 1. Loss of Nf1 increases spontaneous grooming in a nonlinear spatial and temporal pattern, differentially increasing grooming of certain body parts, including the abdomen, head, and wings. This increase in grooming could be overridden by hunger in food-deprived foraging animals, demonstrating that the Nf1 effect is plastic and internal state-dependent. Stimulus-evoked grooming patterns were altered as well, with nf1 mutants exhibiting reductions in wing grooming when coated with dust, suggesting that hierarchical recruitment of grooming command circuits was altered. Yet loss of Nf1 in sensory neurons and/or grooming command neurons did not alter grooming frequency, suggesting that Nf1 affects grooming via higher-order circuit alterations. Changes in grooming coincided with alterations in walking. Flies lacking Nf1 walked with increased forward velocity on a spherical treadmill, yet there was no detectable change in leg kinematics or gait. Thus, loss of Nf1 alters motor function without affecting overall motor coordination, in contrast to other genetic disorders that impair coordination. Overall, these results demonstrate that loss of Nf1 alters the patterning and prioritization of repetitive behaviors, in a state-dependent manner, without affecting motor coordination.

11.
Article in English | MEDLINE | ID: mdl-37197828

ABSTRACT

Analysis of neuronal circuit function in Drosophila can be facilitated with an ex vivo imaging preparation. In this approach, the brain is isolated but intact, preserving neuronal connectivity and function. The preparation has several advantages, including stability, accessibility for pharmacological manipulations, and the ability to image over several hours. The full range of genetic approaches available in Drosophila can be readily combined with pharmacological manipulations in this preparation, and numerous genetically encoded reporters are available to image cellular events, ranging from Ca2+ signaling to neurotransmitter release.

12.
Article in English | MEDLINE | ID: mdl-37197829

ABSTRACT

In vivo imaging of brain activity in Drosophila allows the dissection of numerous types of biologically important neuronal events. A common paradigm involves imaging neuronal Ca2+ transients, often in response to sensory stimuli. These Ca2+ transients correlate with neuronal spiking activity, which generates voltage-sensitive Ca2+ influx. In addition, there is a range of genetically encoded reporters of membrane voltage and of other signaling molecules, such as second-messenger signaling cascade enzymes and neurotransmitters, enabling optical access to a range of cellular processes. Moreover, sophisticated gene expression systems enable access to virtually any single neuron or neuronal group in the fly brain. The in vivo imaging approach enables the study of these processes and how they change during salient sensory-driven events such as olfactory associative learning, when an animal (fly) is presented an odor (a conditioned stimulus) paired with an unconditioned stimulus (an aversive or appetitive stimulus) and forms an associative memory of this pairing. Optical access to neuronal events in the brain allows one to image learning-induced plasticity following the formation of associative memory, dissecting the mechanisms of memory formation, maintenance, and recall.

13.
Article in English | MEDLINE | ID: mdl-37197830

ABSTRACT

Learning and memory allow animals to adjust their behavior based on the predictive value of their past experiences. Memories often exist in complex representations, spread across numerous cells and synapses in the brain. Studying relatively simple forms of memory provides insights into the fundamental processes that underlie multiple forms of memory. Associative learning occurs when an animal learns the relationship between two previously unrelated sensory stimuli, such as when a hungry animal learns that a particular odor is followed by a tasty reward. Drosophila is a particularly powerful model to study how this type of memory works. The fundamental principles are widely shared among animals, and there is a wide range of genetic tools available to study circuit function in flies. In addition, the olfactory structures that mediate associative learning in flies, such as the mushroom body and its associated neurons, are anatomically organized, relatively well-characterized, and readily accessible to imaging. Here, we review the olfactory anatomy and physiology of the olfactory system, describe how plasticity in the olfactory pathway mediates learning and memory, and explain the general principles underlying calcium imaging approaches.

14.
Elife ; 112022 03 14.
Article in English | MEDLINE | ID: mdl-35285796

ABSTRACT

Anatomical and physiological compartmentalization of neurons is a mechanism to increase the computational capacity of a circuit, and a major question is what role axonal compartmentalization plays. Axonal compartmentalization may enable localized, presynaptic plasticity to alter neuronal output in a flexible, experience-dependent manner. Here, we show that olfactory learning generates compartmentalized, bidirectional plasticity of acetylcholine release that varies across the longitudinal compartments of Drosophila mushroom body (MB) axons. The directionality of the learning-induced plasticity depends on the valence of the learning event (aversive vs. appetitive), varies linearly across proximal to distal compartments following appetitive conditioning, and correlates with learning-induced changes in downstream mushroom body output neurons (MBONs) that modulate behavioral action selection. Potentiation of acetylcholine release was dependent on the CaV2.1 calcium channel subunit cacophony. In addition, contrast between the positive conditioned stimulus and other odors required the inositol triphosphate receptor, which maintained responsivity to odors upon repeated presentations, preventing adaptation. Downstream from the MB, a set of MBONs that receive their input from the γ3 MB compartment were required for normal appetitive learning, suggesting that they represent a key node through which reward learning influences decision-making. These data demonstrate that learning drives valence-correlated, compartmentalized, bidirectional potentiation, and depression of synaptic neurotransmitter release, which rely on distinct mechanisms and are distributed across axonal compartments in a learning circuit.


Subject(s)
Acetylcholine , Smell , Animals , Axons , Drosophila/physiology , Drosophila melanogaster , Mushroom Bodies/physiology , Neuronal Plasticity/physiology , Neurotransmitter Agents , Smell/physiology
15.
Nat Commun ; 12(1): 4285, 2021 07 13.
Article in English | MEDLINE | ID: mdl-34257279

ABSTRACT

Neurofibromatosis type 1 is a chronic multisystemic genetic disorder that results from loss of function in the neurofibromin protein. Neurofibromin may regulate metabolism, though the underlying mechanisms remain largely unknown. Here we show that neurofibromin regulates metabolic homeostasis in Drosophila via a discrete neuronal circuit. Loss of neurofibromin increases metabolic rate via a Ras GAP-related domain-dependent mechanism, increases feeding homeostatically, and alters lipid stores and turnover kinetics. The increase in metabolic rate is independent of locomotor activity, and maps to a sparse subset of neurons. Stimulating these neurons increases metabolic rate, linking their dynamic activity state to metabolism over short time scales. Our results indicate that neurofibromin regulates metabolic rate via neuronal mechanisms, suggest that cellular and systemic metabolic alterations may represent a pathophysiological mechanism in neurofibromatosis type 1, and provide a platform for investigating the cellular role of neurofibromin in metabolic homeostasis.


Subject(s)
Neurofibromin 1/metabolism , Neurons/metabolism , Animals , Drosophila , Female , Kinetics , Lipid Metabolism/physiology , Male
17.
Neuron ; 101(5): 763-765, 2019 03 06.
Article in English | MEDLINE | ID: mdl-30844392

ABSTRACT

In this issue of Neuron, Deng et al. (2019) report the generation of a new set of tools to manipulate the entire set of neurotransmitters, neuromodulators, neuropeptides, and their receptors-the "chemoconnectome"-in Drosophila.


Subject(s)
Drosophila , Neuropeptides , Animals , Brain , Neurotransmitter Agents , Synaptic Transmission
18.
Cell Rep ; 27(7): 2014-2021.e2, 2019 05 14.
Article in English | MEDLINE | ID: mdl-31091441

ABSTRACT

Dopaminergic neurons play a key role in encoding associative memories, but little is known about how these circuits modulate memory strength. Here we report that different sets of dopaminergic neurons projecting to the Drosophila mushroom body (MB) differentially regulate valence and memory strength. PPL2 neurons increase odor-evoked calcium responses to a paired odor in the MB and enhance behavioral memory strength when activated during olfactory classical conditioning. When paired with odor alone, they increase MB responses to the paired odor but do not drive behavioral approach or avoidance, suggesting that they increase the salience of the odor without encoding strong valence. This contrasts with the role of dopaminergic PPL1 neurons, which drive behavioral reinforcement but do not alter odor-evoked calcium responses in the MB when stimulated. These data suggest that different sets of dopaminergic neurons modulate olfactory valence and memory strength via independent actions on a memory-encoding brain region.


Subject(s)
Dopaminergic Neurons/metabolism , Memory/physiology , Mushroom Bodies/metabolism , Neuronal Plasticity/physiology , Animals , Dopaminergic Neurons/cytology , Drosophila melanogaster , Mushroom Bodies/cytology
19.
J Neurosci ; 27(40): 10840-8, 2007 Oct 03.
Article in English | MEDLINE | ID: mdl-17913917

ABSTRACT

A longstanding question in taste research concerns taste coding and, in particular, how broadly are individual taste bud cells tuned to taste qualities (sweet, bitter, umami, salty, and sour). Taste bud cells express G-protein-coupled receptors for sweet, bitter, or umami tastes but not in combination. However, responses to multiple taste qualities have been recorded in individual taste cells. We and others have shown previously there are two classes of taste bud cells directly involved in gustatory signaling: "receptor" (type II) cells that detect and transduce sweet, bitter, and umami compounds, and "presynaptic" (type III) cells. We hypothesize that receptor cells transmit their signals to presynaptic cells. This communication between taste cells could represent a potential convergence of taste information in the taste bud, resulting in taste cells that would respond broadly to multiple taste stimuli. We tested this hypothesis using calcium imaging in a lingual slice preparation. Here, we show that receptor cells are indeed narrowly tuned: 82% responded to only one taste stimulus. In contrast, presynaptic cells are broadly tuned: 83% responded to two or more different taste qualities. Receptor cells responded to bitter, sweet, or umami stimuli but rarely to sour or salty stimuli. Presynaptic cells responded to all taste qualities, including sour and salty. These data further elaborate functional differences between receptor cells and presynaptic cells, provide strong evidence for communication within the taste bud, and resolve the paradox of broad taste cell tuning despite mutually exclusive receptor expression.


Subject(s)
Neurons, Afferent/physiology , Presynaptic Terminals/metabolism , Taste Buds/cytology , Taste/physiology , Animals , Glutamate Decarboxylase/genetics , Green Fluorescent Proteins/genetics , In Vitro Techniques , Mice , Mice, Inbred C57BL , Mice, Transgenic , Phospholipase C beta/genetics , Potassium Chloride/pharmacology , Presynaptic Terminals/drug effects , Presynaptic Terminals/physiology , Serotonin/metabolism , Sweetening Agents/pharmacology , Synaptosomal-Associated Protein 25/metabolism
20.
J Comp Neurol ; 505(3): 302-13, 2007 Nov 20.
Article in English | MEDLINE | ID: mdl-17879273

ABSTRACT

Although adenosine triphosphate (ATP) is known to be an afferent transmitter in the peripheral taste system, serotonin (5-HT) and norepinephrine (NE) have also been proposed as candidate neurotransmitters and have been detected immunocytochemically in mammalian taste cells. To understand the significance of biogenic amines in taste, we evaluated the ability of taste cells to synthesize, transport, and package 5-HT and NE. We show by reverse transcriptase-polymerase chain reaction and immunofluorescence microscopy that the enzymes for 5-HT synthesis, tryptophan hydroxylase (TPH) and aromatic amino acid decarboxylase (AADC) are expressed in taste cells. In contrast, enzymes necessary for NE synthesis, tyrosine hydroxylase (TH) and dopamine beta-hydroxylase (DBH) are absent. Both TH and DBH are expressed in nerve fibers that penetrate taste buds. Taste buds also robustly express plasma membrane transporters for 5-HT and NE. Within the taste bud NET, a specific NE transporter, is expressed in some presynaptic (type III) and some glial-like (type I) cells but not in receptor (type II) cells. By using enzyme immunoassay, we show uptake of NE, probably through NET in taste epithelium. Proteins involved in inactivating and packaging NE, including catechol-O-methyltransferase (COMT), monoamine oxidase-A (MAO-A), vesicular monoamine transporter (VMAT1,2) and chromogranin A (ChrgA), are also expressed in taste buds. Within the taste bud, ChrgA is found only in presynaptic cells and may account for dense-cored vesicles previously seen in some taste cells. In summary, we postulate that aminergic presynaptic taste cells synthesize only 5-HT, whereas NE (perhaps secreted by sympathetic fibers) may be concentrated and repackaged for secretion.


Subject(s)
Norepinephrine/metabolism , Serotonin/metabolism , Taste Buds/metabolism , Animals , Epithelial Cells/metabolism , Mice , Mice, Inbred C57BL , Mice, Transgenic , Microscopy, Fluorescence , RNA, Messenger/analysis , Reverse Transcriptase Polymerase Chain Reaction , Vesicular Monoamine Transport Proteins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL