Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 61
Filter
1.
J Biol Chem ; 299(11): 105325, 2023 11.
Article in English | MEDLINE | ID: mdl-37805141

ABSTRACT

In multicellular organisms, a variety of lipid-protein particles control the systemic flow of triacylglycerides, cholesterol, and fatty acids between cells in different tissues. The chemical modification by oxidation of these particles can trigger pathological responses, mediated by a group of membrane proteins termed scavenger receptors. The lectin-like oxidized low-density lipoprotein (LOX-1) scavenger receptor binds to oxidized low-density lipoprotein (oxLDL) and mediates both signaling and trafficking outcomes. Here, we identified five synthetic proteins termed Affimers from a phage display library, each capable of binding recombinant LOX-1 extracellular (oxLDL-binding) domain with high specificity. These Affimers, based on a phytocystatin scaffold with loop regions of variable sequence, were able to bind to the plasma membrane of HEK293T cells exclusively when human LOX-1 was expressed. Binding and uptake of fluorescently labeled oxLDL by the LOX-1-expressing cell model was inhibited with subnanomolar potency by all 5 Affimers. ERK1/2 activation, stimulated by oxLDL binding to LOX-1, was also significantly inhibited (p < 0.01) by preincubation with LOX-1-specific Affimers, but these Affimers had no direct agonistic effect. Molecular modeling indicated that the LOX-1-specific Affimers bound predominantly via their variable loop regions to the surface of the LOX-1 lectin-like domain that contains a distinctive arrangement of arginine residues previously implicated in oxLDL binding, involving interactions with both subunits of the native, stable scavenger receptor homodimer. These data provide a new class of synthetic tools to probe and potentially modulate the oxLDL/LOX-1 interaction that plays an important role in vascular disease.


Subject(s)
MAP Kinase Signaling System , Scavenger Receptors, Class E , Humans , Scavenger Receptors, Class E/genetics , Scavenger Receptors, Class E/chemistry , Scavenger Receptors, Class E/metabolism , HEK293 Cells , Lipoproteins, LDL/metabolism , Receptors, Scavenger/metabolism , Lectins/metabolism
2.
Anal Chem ; 94(23): 8156-8163, 2022 06 14.
Article in English | MEDLINE | ID: mdl-35634999

ABSTRACT

C. difficile infection (CDI) is a leading healthcare-associated infection with a high morbidity and mortality and is a financial burden. No current standalone point-of-care test (POCT) is sufficient for the identification of true CDI over a disease-free carriage of C. difficile, so one is urgently required to ensure timely, appropriate treatment. Here, two types of binding proteins, Affimers and nanobodies, targeting two C. difficile biomarkers, glutamate dehydrogenase (GDH) and toxin B (TcdB), are combined in NanoBiT (NanoLuc Binary Technology) split-luciferase assays. The assays were optimized and their performance controlling parameters were examined. The 44 fM limit of detection (LoD), 4-5 log range and 1300-fold signal gain of the TcdB assay in buffer is the best observed for a NanoBiT assay to date. In the stool sample matrix, the GDH and TcdB assay sensitivity (LoD = 4.5 and 2 pM, respectively) and time to result (32 min) are similar to a current, commercial lateral flow POCT, but the NanoBit assay has no wash steps, detects clinically relevant TcdB over TcdA, and is quantitative. Development of the assay into a POCT may drive sensitivity further and offer an urgently needed ultrasensitive TcdB test for the rapid diagnosis of true CDI. The NanoBiTBiP (NanoBiT with Binding Proteins) system offers advantages over NanoBiT assays with antibodies as binding elements in terms of ease of production and assay performance. We expect this methodology and approach to be generally applicable to other biomarkers.


Subject(s)
Bacterial Toxins , Clostridioides difficile , Bacterial Proteins , Enterotoxins , Feces , Glutamate Dehydrogenase/metabolism , Luciferases
3.
Chembiochem ; 22(1): 232-240, 2021 01 05.
Article in English | MEDLINE | ID: mdl-32961017

ABSTRACT

The BCL-2 family is a challenging group of proteins to target selectively due to sequence and structural homologies across the family. Selective ligands for the BCL-2 family regulators of apoptosis are useful as probes to understand cell biology and apoptotic signalling pathways, and as starting points for inhibitor design. We have used phage display to isolate Affimer reagents (non-antibody-binding proteins based on a conserved scaffold) to identify ligands for MCL-1, BCL-xL , BCL-2, BAK and BAX, then used multiple biophysical characterisation methods to probe the interactions. We established that purified Affimers elicit selective recognition of their target BCL-2 protein. For anti-apoptotic targets BCL-xL and MCL-1, competitive inhibition of their canonical protein-protein interactions is demonstrated. Co-crystal structures reveal an unprecedented mode of molecular recognition; where a BH3 helix is normally bound, flexible loops from the Affimer dock into the BH3 binding cleft. Moreover, the Affimers induce a change in the target proteins towards a desirable drug-bound-like conformation. These proof-of-concept studies indicate that Affimers could be used as alternative templates to inspire the design of selective BCL-2 family modulators and more generally other protein-protein interaction inhibitors.


Subject(s)
Myeloid Cell Leukemia Sequence 1 Protein/analysis , bcl-X Protein/analysis , Apoptosis , Humans , Ligands , Models, Molecular , Myeloid Cell Leukemia Sequence 1 Protein/metabolism , Protein Binding , Protein Conformation , bcl-X Protein/metabolism
4.
Bioconjug Chem ; 32(10): 2205-2212, 2021 10 20.
Article in English | MEDLINE | ID: mdl-34565149

ABSTRACT

A significant unmet need exists for the delivery of biologic drugs such as polypeptides or nucleic acids to the central nervous system for the treatment and understanding of neurodegenerative diseases. Naturally occurring bacterial toxins have been considered as tools to meet this need. However, due to the complexity of tethering macromolecular drugs to toxins and the inherent dangers of working with large quantities of recombinant toxins, no such route has been successfully exploited. Developing a method where a bacterial toxin's nontoxic targeting subunit can be assembled with a drug immediately prior to in vivo administration has the potential to circumvent some of these issues. Using a phage-display screen, we identified two antibody mimetics, anticholera toxin Affimer (ACTA)-A2 and ACTA-C6 that noncovalently associate with the nonbinding face of the cholera toxin B-subunit. In a first step toward the development of a nonviral motor neuron drug-delivery vehicle, we show that Affimers can be selectively delivered to motor neurons in vivo.


Subject(s)
Cholera Toxin , Bacterial Toxins , Immunoglobulins , Motor Neurons , Peptides
5.
Blood ; 133(11): 1233-1244, 2019 03 14.
Article in English | MEDLINE | ID: mdl-30545831

ABSTRACT

Bleeding complications secondary to surgery, trauma, or coagulation disorders are important causes of morbidity and mortality. Although fibrin sealants are considered to minimize blood loss, this is not widely adopted because of its high cost and/or risk for infection. We present a novel methodology employing nonantibody fibrinogen-binding proteins, termed Affimers, to stabilize fibrin networks with the potential to control excessive bleeding. Two fibrinogen-specific Affimer proteins, F5 and G2, were identified and characterized for their effects on clot structure/fibrinolysis, using turbidimetric and permeation analyses and confocal and electron microscopy. Binding studies and molecular modeling identified interaction sites, whereas plasmin generation assays determined effects on plasminogen activation. In human plasma, F5 and G2 prolonged clot lysis time from 9.8 ± 1.1 minutes in the absence of Affimers to 172.6 ± 7.4 and more than 180 minutes (P < .0001), respectively, and from 7.6 ± 0.2 to 28.7 ± 5.8 (P < .05) and 149.3 ± 9.7 (P < .0001) minutes in clots made from purified fibrinogen. Prolongation in fibrinolysis was consistent across plasma samples from healthy control patients and individuals at high bleeding risk. F5 and G2 had a differential effect on clot structure and G2 profoundly altered fibrin fiber arrangement, whereas F5 maintained physiological clot structure. Affimer F5 reduced fibrin-dependent plasmin generation and was predicted to bind fibrinogen D fragment close to tissue plasminogen activator (tPA; residues γ312-324) and plasminogen (α148-160) binding sites, thus interfering with tPA-plasminogen interaction and representing 1 potential mechanism for modulation of fibrinolysis. Our Affimer proteins provide a novel methodology for stabilizing fibrin networks with potential future clinical implications to reduce bleeding risk.


Subject(s)
Blood Proteins/pharmacology , Fibrin Clot Lysis Time , Fibrinogen/metabolism , Fibrinolysis/drug effects , Thrombosis/prevention & control , Humans , Thrombosis/etiology , Tissue Plasminogen Activator/metabolism
6.
Haematologica ; 106(6): 1616-1623, 2021 06 01.
Article in English | MEDLINE | ID: mdl-32354869

ABSTRACT

Complement C3 binds fibrinogen and compromises fibrin clot lysis thereby enhancing thrombosis risk. We investigated the role of fibrinogen-C3 interaction as a novel therapeutic target to reduce thrombosis risk by analysing: i) consistency in the fibrinolytic properties of C3, ii) binding sites between fibrinogen and C3 and iii) modulation of fibrin clot lysis by manipulating fibrinogen-C3 interactions. Purified fibrinogen and C3 from the same individuals (n=24) were used to assess inter-individual variability in the anti-fibrinolytic effects of C3. Microarray screening and molecular modelling evaluated C3 and fibrinogen interaction sites. Novel synthetic conformational proteins, termed Affimers, were used to modulate C3-fibrinogen interaction and fibrinolysis. C3 purified from patients with type 1 diabetes showed enhanced prolongation of fibrinolysis compared with healthy control protein [195±105 and 522±166 seconds, respectively (p=0.04)], with consistent effects but a wider range (5-51% and 5-18% lysis prolongation, respectively). Peptide microarray screening identified 2 potential C3-fibrinogen interactions sites within fibrinogen ß chain (residues 424-433, 435-445). One fibrinogen-binding Affimer was isolated that displayed sequence identity with C3 in an exposed area of the protein. This Affimer abolished C3-induced prolongation of fibrinolysis (728±25.1 seconds to 632±23.7 seconds, p=0.005) and showed binding to fibrinogen in the same region that is involved in C3-fibrinogen interactions. Moreover, it shortened plasma clot lysis of patients with diabetes, cardiovascular disease or controls by 7-11%. C3 binds fibrinogen ß-chain and disruption of fibrinogen-C3 interaction using Affimer proteins enhances fibrinolysis, which represents a potential novel target tool to reduce thrombosis in high risk individuals.


Subject(s)
Fibrinogen , Thrombosis , Complement C3 , Fibrin , Fibrinolysis , Humans , Thrombosis/drug therapy , Thrombosis/etiology , Thrombosis/prevention & control
7.
Proc Natl Acad Sci U S A ; 115(1): E72-E81, 2018 01 02.
Article in English | MEDLINE | ID: mdl-29247053

ABSTRACT

Protein-protein interactions are essential for the control of cellular functions and are critical for regulation of the immune system. One example is the binding of Fc regions of IgG to the Fc gamma receptors (FcγRs). High sequence identity (98%) between the genes encoding FcγRIIIa (expressed on macrophages and natural killer cells) and FcγRIIIb (expressed on neutrophils) has prevented the development of monospecific agents against these therapeutic targets. We now report the identification of FcγRIIIa-specific artificial binding proteins called "Affimer" that block IgG binding and abrogate FcγRIIIa-mediated downstream effector functions in macrophages, namely TNF release and phagocytosis. Cocrystal structures and molecular dynamics simulations have revealed the structural basis of this specificity for two Affimer proteins: One binds directly to the Fc binding site, whereas the other acts allosterically.


Subject(s)
Antigen-Antibody Complex/chemistry , Immunoglobulin G/chemistry , Molecular Dynamics Simulation , Receptors, IgG/chemistry , Allosteric Regulation , Antigen-Antibody Complex/immunology , Humans , Immunoglobulin G/immunology , Receptors, IgG/immunology
8.
Org Biomol Chem ; 17(15): 3861-3867, 2019 04 10.
Article in English | MEDLINE | ID: mdl-30938392

ABSTRACT

The design, synthesis and structural characterization of non-natural oligomers that adopt well-defined conformations, so called foldamers, is a key objective in developing biomimetic 3D functional architectures. For the aromatic oligoamide foldamer family, use of interactions between side-chains to control conformation is underexplored. The current manuscript addresses this objective through the design, synthesis and conformational analyses of model dimers derived from 3-O-alkylated para-aminobenzoic acid monomers. The O-alkyl groups on these foldamers are capable of adopting syn- or anti-conformers through rotation around the Ar-CO/NH axes. In the syn-conformation this allows the foldamer to act as a topographical mimic of the α-helix whereby the O-alkyl groups mimic the spatial orientation of the i and i + 4 side-chains from the α-helix. Using molecular modelling and 2D NMR analyses, this work illustrates that covalent links and hydrogen-bonding interactions between side-chains can bias the conformation in favour of the α-helix mimicking syn-conformer, offering insight that may be more widely applied to control secondary structure in foldamers.


Subject(s)
Amides/chemistry , Hydrogen Bonding , Magnetic Resonance Spectroscopy , Models, Molecular , Molecular Conformation
9.
Traffic ; 17(1): 53-65, 2016 Jan.
Article in English | MEDLINE | ID: mdl-26459808

ABSTRACT

Vascular endothelial growth factor A (VEGF-A) regulates many aspects of vascular function. VEGF-A binding to vascular endothelial growth factor receptor 2 (VEGFR2) stimulates endothelial signal transduction and regulates multiple cellular responses. Activated VEGFR2 undergoes ubiquitination but the enzymes that regulate this post-translational modification are unclear. In this study, the de-ubiquitinating enzyme, USP8, is shown to regulate VEGFR2 trafficking, de-ubiquitination, proteolysis and signal transduction. USP8-depleted endothelial cells displayed altered VEGFR2 ubiquitination and production of a unique VEGFR2 extracellular domain proteolytic fragment caused by VEGFR2 accumulation in the endosome-lysosome system. In addition, perturbed VEGFR2 trafficking impaired VEGF-A-stimulated signal transduction in USP8-depleted cells. Thus, regulation of VEGFR2 ubiquitination and de-ubiquitination has important consequences for the endothelial cell response and vascular physiology.


Subject(s)
Endopeptidases/metabolism , Endosomal Sorting Complexes Required for Transport/metabolism , Proteolysis , Signal Transduction , Ubiquitin Thiolesterase/metabolism , Vascular Endothelial Growth Factor Receptor-2/metabolism , Endosomes/metabolism , Human Umbilical Vein Endothelial Cells/metabolism , Humans , Protein Transport , Ubiquitination
10.
Angew Chem Int Ed Engl ; 57(34): 11060-11063, 2018 08 20.
Article in English | MEDLINE | ID: mdl-29873161

ABSTRACT

Optical super-resolution techniques allow fluorescence imaging below the classical diffraction limit of light. From a technology standpoint, recent methods are approaching molecular-scale spatial resolution. However, this remarkable achievement is not easily translated to imaging of cellular components, since current labeling approaches are limited by either large label sizes (antibodies) or the sparse availability of small and efficient binders (nanobodies, aptamers, genetically-encoded tags). In this work, we combined recently developed Affimer reagents with site-specific DNA modification for high-efficiency labeling and imaging using DNA-PAINT. We assayed our approach using an actin Affimer. The small DNA-conjugated affinity binders could provide a solution for efficient multitarget super-resolution imaging in the future.


Subject(s)
DNA/chemistry , Microscopy, Fluorescence/methods , Actins/chemistry , Animals , Binding Sites , COS Cells , Chlorocebus aethiops , Fluorescent Dyes/chemistry
11.
Anal Chem ; 89(5): 3051-3058, 2017 03 07.
Article in English | MEDLINE | ID: mdl-28192970

ABSTRACT

Conventional immunoassays rely on antibodies that provide high affinity, specificity, and selectivity against a target analyte. However, the use of antibodies for the detection of small-sized, nonimmunogenic targets, such as pharmaceuticals and environmental contaminants, presents a number of challenges. Recent advances in protein engineering have led to the emergence of antibody mimetics that offer the high affinity and specificity associated with antibodies, but with reduced batch-to-batch variability, high stability, and in vitro selection to ensure rapid discovery of binders against a wide range of targets. In this work we explore the potential of Affimers, a recent example of antibody mimetics, as suitable bioreceptors for the detection of small organic target compounds, here methylene blue. Target immobilization for Affimer characterization was achieved using long-chained alkanethiol linkers coupled with oligoethylene glycol (LCAT-OEG). Using quartz crystal microbalance with dissipation monitoring (QCM-D), we determine the affinity constant, KD, of the methylene blue Affimer to be comparable to that of antibodies. Further, we demonstrate the high selectivity of Affimers for its target in complex matrixes, here a limnetic sample. Finally, we demonstrate an Affimer-based competition assay, illustrating the potential of Affimers as bioreceptors in immunoassays for the detection of small-sized, nonimmunogenic compounds.

12.
Future Oncol ; 12(19): 2243-63, 2016 Oct.
Article in English | MEDLINE | ID: mdl-27381494

ABSTRACT

Bladder tumors show diverse molecular features and clinical outcome. Muscle-invasive bladder cancer has poor prognosis and novel approaches to systemic therapy are urgently required. Non-muscle-invasive bladder cancer has good prognosis, but high recurrence rate and the requirement for life-long disease monitoring places a major burden on patients and healthcare providers. Studies of tumor tissues from both disease groups have identified frequent alterations of FGFRs, including mutations of FGFR3 and dysregulated expression of FGFR1 and FGFR3 that suggest that these may be valid therapeutic targets. We summarize current understanding of the molecular alterations affecting these receptors in bladder tumors, preclinical studies validating them as therapeutic targets, available FGFR-targeted agents and results from early clinical trials in bladder cancer patients.


Subject(s)
Antineoplastic Agents/therapeutic use , ErbB Receptors/antagonists & inhibitors , Molecular Targeted Therapy , Precision Medicine , Urinary Bladder Neoplasms/drug therapy , Animals , Antineoplastic Agents/pharmacology , Biomarkers , Drug Evaluation, Preclinical , Drug Resistance, Neoplasm , ErbB Receptors/chemistry , ErbB Receptors/genetics , Gene Expression Regulation, Neoplastic , Humans , Ligands , Mutation , Neoplasm Staging , Patient Outcome Assessment , Patient Selection , Precision Medicine/methods , Prognosis , Receptor, Fibroblast Growth Factor, Type 1/genetics , Receptor, Fibroblast Growth Factor, Type 1/metabolism , Receptor, Fibroblast Growth Factor, Type 3/genetics , Receptor, Fibroblast Growth Factor, Type 3/metabolism , Signal Transduction/drug effects , Translocation, Genetic , Urinary Bladder Neoplasms/genetics , Urinary Bladder Neoplasms/mortality , Urinary Bladder Neoplasms/pathology
13.
J Inherit Metab Dis ; 38(4): 753-63, 2015 Jul.
Article in English | MEDLINE | ID: mdl-25868665

ABSTRACT

Vascular endothelial growth factors (VEGFs) bind to VEGF receptor tyrosine kinases (VEGFRs). The VEGF and VEGFR gene products regulate diverse regulatory pathways in mammalian development, health and disease. The interaction between a particular VEGF and its cognate VEGFR activates multiple signal transduction pathways which regulate different cellular responses including metabolism, gene expression, proliferation, migration, and survival. The family of VEGF isoforms regulate vascular physiology and promote tissue homeostasis. VEGF dysfunction is implicated in major chronic disease states including atherosclerosis, diabetes, and cancer. More recent studies implicate a strong link between response to VEGF and regulation of vascular metabolism. Understanding how this family of multitasking cytokines regulates cell and animal function has implications for treating many different diseases.


Subject(s)
Receptors, Vascular Endothelial Growth Factor/metabolism , Vascular Endothelial Growth Factor A/metabolism , Vascular Endothelial Growth Factor A/physiology , Animals , Disease , Health , Humans , Receptors, Vascular Endothelial Growth Factor/genetics , Signal Transduction , Vascular Diseases/genetics , Vascular Diseases/metabolism , Vascular Endothelial Growth Factor A/genetics
14.
Angew Chem Int Ed Engl ; 54(10): 2960-5, 2015 Mar 02.
Article in English | MEDLINE | ID: mdl-25651514

ABSTRACT

Inhibition of protein-protein interactions (PPIs) represents a major challenge in chemical biology and drug discovery. α-Helix mediated PPIs may be amenable to modulation using generic chemotypes, termed "proteomimetics", which can be assembled in a modular manner to reproduce the vectoral presentation of key side chains found on a helical motif from one partner within the PPI. In this work, it is demonstrated that by using a library of N-alkylated aromatic oligoamide helix mimetics, potent helix mimetics which reproduce their biophysical binding selectivity in a cellular context can be identified.


Subject(s)
Molecular Mimicry , Proteins/chemistry , Cell Line, Tumor , Humans
15.
Sens Diagn ; 3(1): 104-111, 2024 Jan 18.
Article in English | MEDLINE | ID: mdl-38249540

ABSTRACT

Concentration-therapeutic efficacy relationships have been observed for several therapeutic monoclonal antibodies (TmAb), where low circulating levels can result in ineffective treatment and high concentrations can cause adverse reactions. Rapid therapeutic drug monitoring (TDM) of TmAb drugs would provide the opportunity to adjust an individual patient's dosing regimen to improve treatment results. However, TDM for immunotherapies is currently limited to centralised testing methods with long sample-collection to result timeframes. Here, we show four point-of-care (PoC) TmAb biosensors by combining anti-idiotypic Affimer proteins and NanoBiT split luciferase technology at a molecular level to provide a platform for rapid quantification (<10 minutes) for four clinically relevant TmAb (rituximab, adalimumab, ipilimumab and trastuzumab). The rituximab sensor performed best with 4 pM limit of detection (LoD) and a quantifiable range between 8 pM-2 nM with neglectable matrix effects in serum up to 1%. After dilution of serum samples, the resulting quantifiable range for all four sensors falls within the clinically relevant range and compares favourably with the sensitivity and/or time-to-result of current ELISA standards. Further development of these sensors into a PoC test may improve treatment outcome and quality of life for patients receiving immunotherapy.

16.
Blood Adv ; 8(15): 3917-3928, 2024 Aug 13.
Article in English | MEDLINE | ID: mdl-38838227

ABSTRACT

ABSTRACT: Glycoprotein VI (GPVI) plays a key role in collagen-induced platelet aggregation. Affimers are engineered binding protein alternatives to antibodies. We screened and characterized GPVI-binding Affimers as novel tools to probe GPVI function. Among the positive clones, M17, D22, and D18 bound GPVI with the highest affinities (dissociation constant (KD) in the nanomolar range). These Affimers inhibited GPVI-collagen-related peptide (CRP)-XL/collagen interactions, CRP-XL/collagen-induced platelet aggregation, and D22 also inhibited in vitro thrombus formation on a collagen surface under flow. D18 bound GPVI dimer but not monomer. GPVI binding was increased for D18 but not M17/D22 upon platelet activation by CRP-XL and adenosine 5'-diphosphate. D22 but not M17/D18 displaced nanobody 2 (Nb2) binding to GPVI, indicating similar epitopes for D22 with Nb2 but not for M17/D18. Mapping of binding sites revealed that D22 binds a site that overlaps with Nb2 on the D1 domain, whereas M17 targets a site on the D2 domain, overlapping in part with the glenzocimab binding site, a humanized GPVI antibody fragment antigen-binding fragment. D18 targets a new region on the D2 domain. We found that D18 is a stable noncovalent dimer and forms a stable complex with dimeric GPVI with 1:1 stoichiometry. Taken together, our data demonstrate that Affimers modulate GPVI-ligand interactions and bind different sites on GPVI D1/D2 domains. D18 is dimer-specific and could be used as a tool to detect GPVI dimerization or clustering in platelets. A dimeric epitope regulating ligand binding was identified on the GPVI D2 domain, which could be used for the development of novel bivalent antithrombotic agents selectively targeting GPVI dimer on platelets.


Subject(s)
Blood Platelets , Platelet Aggregation , Platelet Membrane Glycoproteins , Protein Binding , Protein Multimerization , Platelet Membrane Glycoproteins/metabolism , Platelet Membrane Glycoproteins/chemistry , Humans , Blood Platelets/metabolism , Ligands , Platelet Aggregation/drug effects , Binding Sites , Collagen/metabolism , Collagen/chemistry , Carrier Proteins , Peptides
17.
PLoS One ; 18(3): e0283044, 2023.
Article in English | MEDLINE | ID: mdl-36928454

ABSTRACT

3D cell culture models of cancer are currently being developed to recapitulate in vivo physiological conditions and to assess therapeutic responses. However, most models failed to incorporate the biochemical and biophysical stimuli from fluid flow. In this study, a three-dimensional scaffold, SeedEZ was applied within the PerfusionPal perfused culture system to investigate how perfusion, and blood-like oxygen delivery influenced breast cancer cell growth and their responses to a commonly used breast cancer drug tamoxifen. Our results showed that breast cancer cells could be maintained over 3 weeks in PerfusionPal with increased cell viability compared to static 3D culture in fully humanised conditions. This platform also supported examining the effect of tamoxifen on breast cancer cell lines and in primary patient-derived breast cancer samples. Future work is warranted to further the adaption for fully humanised assessment of drug effectiveness in a patient personalized approach with the aim to reduce the burden of animal use in cancer research and increase the degree of human pre-clinical data translation to clinic.


Subject(s)
Breast Neoplasms , Animals , Humans , Female , Breast Neoplasms/drug therapy , Cell Culture Techniques/methods , Breast , MCF-7 Cells , Tamoxifen/pharmacology , Tamoxifen/therapeutic use , Cell Line, Tumor
18.
Biosens Bioelectron ; 237: 115488, 2023 Oct 01.
Article in English | MEDLINE | ID: mdl-37419072

ABSTRACT

Therapeutic monoclonal antibodies (TmAb) have emerged as effective treatments for a number of cancers and autoimmune diseases. However, large interpatient disparities in the pharmacokinetics of TmAb treatment requires close therapeutic drug monitoring (TDM) to optimise dosage for individual patients. Here we demonstrate an approach for achieving rapid, sensitive quantification of two monoclonal antibody therapies using a previously described enzyme switch sensor platform. The enzyme switch sensor consists of a ß-lactamase - ß-lactamase inhibitor protein (BLA-BLIP) complex with two anti-idiotype binding proteins (Affimer proteins) as recognition elements. The BLA-BLIP sensor was engineered to detect two TmAbs (trastuzumab and ipilimumab) by developing constructs incorporating novel synthetic binding reagents to each of these mAbs. Trastuzumab and ipilimumab were successfully monitored with sub nM sensitivity in up to 1% serum, thus covering the relevant therapeutic range. Despite the modular design, the BLA-BLIP sensor was unsuccessful in detecting two further TmAbs (rituximab and adalimumab), an explanation for which was explored. In conclusion, the BLA-BLIP sensors provide a rapid biosensor for TDM of trastuzumab and ipilimumab with the potential to improve therapy. The sensitivity of this platform alongside its rapid action would be suitable for bedside monitoring in a point-of-care (PoC) setting.


Subject(s)
Biosensing Techniques , Drug Monitoring , Humans , Ipilimumab , Antibodies, Monoclonal/therapeutic use , Trastuzumab/therapeutic use , Immunotherapy
19.
Cell Rep ; 42(10): 113184, 2023 10 31.
Article in English | MEDLINE | ID: mdl-37776520

ABSTRACT

Kinases are important therapeutic targets, and their inhibitors are classified according to their mechanism of action, which range from blocking ATP binding to covalent inhibition. Here, a mechanism of inhibition is highlighted by capturing p21-activated kinase 5 (PAK5) in an intermediate state of activation using an Affimer reagent that binds in the P+1 pocket. PAK5 was identified from a non-hypothesis-driven high-content imaging RNAi screen in urothelial cancer cells. Silencing of PAK5 resulted in reduced cell number, G1/S arrest, and enlargement of cells, suggesting it to be important in urothelial cancer cell line survival and proliferation. Affimer reagents were isolated to identify mechanisms of inhibition. The Affimer PAK5-Af17 recapitulated the phenotype seen with siRNA. Co-crystallization revealed that PAK5-Af17 bound in the P+1 pocket of PAK5, locking the kinase into a partial activation state. This mechanism of inhibition indicates that another class of kinase inhibitors is possible.


Subject(s)
Neoplasms , p21-Activated Kinases , Humans , p21-Activated Kinases/genetics , p21-Activated Kinases/metabolism , Phosphorylation , Protein Binding
20.
Methods Mol Biol ; 2419: 193-212, 2022.
Article in English | MEDLINE | ID: mdl-35237966

ABSTRACT

Lipid particles found in circulating extracellular fluids such as blood or lymph are essential for cellular homeostasis, metabolism and survival. Such particles provide essential lipids and fats which enable cells to synthesize new membranes and regulate different biochemical pathways. Imbalance in lipid particle metabolism can cause pathological states such as atherosclerosis. Here, elevated low-density lipoprotein (LDL) accumulation leads to fat-filled lesions or plaques in arterial walls. In this chapter, we provide a detailed set of protocols for the rapid and safe purification of lipid particles from human blood using high-speed ultracentrifugation. We provide a detailed set of assays for further analysis of the biochemical and cellular properties of these lipid particles. By combining these assays, we can better understand the complex roles of different lipid particles in normal physiology and disease pathology.


Subject(s)
Atherosclerosis , Lipoproteins, LDL , Humans , Lipid Metabolism , Lipoproteins, LDL/chemistry , Ultracentrifugation
SELECTION OF CITATIONS
SEARCH DETAIL