Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
Physiol Mol Biol Plants ; 27(5): 959-968, 2021 May.
Article in English | MEDLINE | ID: mdl-34092947

ABSTRACT

Camellia oleifera is believed to exhibit a complex intraspecific polyploidy phenomenon. Abnormal microsporogenesis can promote the formation of unreduced gametes in plants and lead to sexual polyploidy, so it is hypothesized that improper meiosis probably results in the formation of natural polyploidy in Camellia oleifera. In this study, based on the cytological observation of meiosis in pollen mother cells (PMCs), we found natural 2n pollen for the first time in Camellia oleifera, which may lead to the formation of natural polyploids by sexual polyploidization. Additionally, abnormal cytological behaviour during meiosis, including univalent chromosomes, extraequatorial chromosomes, early segregation, laggard chromosomes, chromosome stickiness, asynchronous meiosis and deviant cytokinesis (monad, dyads, triads), was observed, which could be the cause of 2n pollen formation. Moreover, we confirmed a relationship among the length-width ratio of flower buds, stylet length and microsporogenesis. This result suggested that we can immediately determine the microsporogenesis stages by phenotypic characteristics, which may be applicable to breeding advanced germplasm in Camellia oleifera. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s12298-021-01002-5.

2.
PeerJ ; 11: e14756, 2023.
Article in English | MEDLINE | ID: mdl-36852222

ABSTRACT

Camellia hainanica, which is common in China's Hainan Province, is an important woody olive tree species. Due to many years of geographic isolation, C. hainanica has not received the attention it deserves, which limits the exploitation of germplasm resources. Therefore, it is necessary to study population genetic characteristics for further utilization and conservation of C. hainanica. In this study, 96 individuals in six wild Camellia hainanica populations were used for ploidy analysis of the chromosome number, and the genetic diversity and population structure were investigated using 12 pairs of SSR primers. The results show complex ploidy differentiation in C. hainanica species. The ploidy of wild C. hainanica includes tetraploid, pentaploid, hexaploid, heptaploid, octoploid and decaploid species. Genetic analysis shows that genetic diversity and genetic differentiation among populations are low. Populations can be divided into two clusters based on their genetic structure, which matches their geographic location. Finally, to further maintain the genetic diversity of C. hainanica, ex-situ cultivation and in-situ management measures should be considered to protect it in the future.


Subject(s)
Camellia , Genetic Drift , Humans , Ploidies , Tetraploidy , Camellia/genetics , Genetic Structures
SELECTION OF CITATIONS
SEARCH DETAIL