Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
1.
J Immunol ; 204(3): 498-509, 2020 02 01.
Article in English | MEDLINE | ID: mdl-31882518

ABSTRACT

Upon Ag exposure, naive B cells expressing BCR able to bind Ag can undergo robust proliferation and differentiation that can result in the production of Ab-secreting and memory B cells. The factors determining whether an individual naive B cell will proliferate following Ag encounter remains unclear. In this study, we found that polyclonal naive murine B cell populations specific for a variety of foreign Ags express high levels of the orphan nuclear receptor Nur77, which is known to be upregulated downstream of BCR signaling as a result of cross-reactivity with self-antigens in vivo. Similarly, a fraction of naive human B cells specific for clinically-relevant Ags derived from respiratory syncytial virus and HIV-1 also exhibited an IgMLOW IgD+ phenotype, which is associated with self-antigen cross-reactivity. Functionally, naive B cells expressing moderate levels of Nur77 are most likely to proliferate in vivo following Ag injection. Together, our data indicate that BCR cross-reactivity with self-antigen is a common feature of populations of naive B cells specific for foreign Ags and a moderate level of cross-reactivity primes individual cells for optimal proliferative responses following Ag exposure.


Subject(s)
Autoantigens/immunology , B-Lymphocyte Subsets/immunology , B-Lymphocytes/immunology , Cross Reactions/immunology , Receptors, Antigen, B-Cell/metabolism , Animals , Antibody Formation , Cell Differentiation , Cells, Cultured , Immunologic Memory , Lymphocyte Activation , Lymphocyte Count , Mice , Mice, Inbred C57BL , Mice, Transgenic , Receptors, Antigen, B-Cell/genetics
2.
Science ; 372(6537)2021 04 02.
Article in English | MEDLINE | ID: mdl-33795432

ABSTRACT

Multivalent display of receptor-engaging antibodies or ligands can enhance their activity. Instead of achieving multivalency by attachment to preexisting scaffolds, here we unite form and function by the computational design of nanocages in which one structural component is an antibody or Fc-ligand fusion and the second is a designed antibody-binding homo-oligomer that drives nanocage assembly. Structures of eight nanocages determined by electron microscopy spanning dihedral, tetrahedral, octahedral, and icosahedral architectures with 2, 6, 12, and 30 antibodies per nanocage, respectively, closely match the corresponding computational models. Antibody nanocages targeting cell surface receptors enhance signaling compared with free antibodies or Fc-fusions in death receptor 5 (DR5)-mediated apoptosis, angiopoietin-1 receptor (Tie2)-mediated angiogenesis, CD40 activation, and T cell proliferation. Nanocage assembly also increases severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pseudovirus neutralization by α-SARS-CoV-2 monoclonal antibodies and Fc-angiotensin-converting enzyme 2 (ACE2) fusion proteins.


Subject(s)
Antibodies/chemistry , Antibodies/immunology , Nanostructures , Protein Engineering , Signal Transduction , Angiopoietins/chemistry , Angiopoietins/immunology , Angiopoietins/metabolism , Antibodies, Monoclonal/chemistry , Antibodies, Monoclonal/immunology , Antibodies, Neutralizing/chemistry , Antibodies, Neutralizing/immunology , Antibodies, Viral/chemistry , Antibodies, Viral/immunology , B-Lymphocytes/immunology , CD40 Antigens/chemistry , CD40 Antigens/immunology , CD40 Antigens/metabolism , Cell Line, Tumor , Cell Proliferation , Computer Simulation , Genes, Synthetic , Humans , Immunoglobulin Fc Fragments/chemistry , Lymphocyte Activation , Models, Molecular , Protein Binding , Receptor, TIE-2/metabolism , Receptors, TNF-Related Apoptosis-Inducing Ligand/immunology , Receptors, TNF-Related Apoptosis-Inducing Ligand/metabolism , SARS-CoV-2/immunology , T-Lymphocytes/immunology , T-Lymphocytes/physiology
3.
bioRxiv ; 2020 Dec 01.
Article in English | MEDLINE | ID: mdl-33299994

ABSTRACT

Antibodies are widely used in biology and medicine, and there has been considerable interest in multivalent antibody formats to increase binding avidity and enhance signaling pathway agonism. However, there are currently no general approaches for forming precisely oriented antibody assemblies with controlled valency. We describe the computational design of two-component nanocages that overcome this limitation by uniting form and function. One structural component is any antibody or Fc fusion and the second is a designed Fc-binding homo-oligomer that drives nanocage assembly. Structures of 8 antibody nanocages determined by electron microscopy spanning dihedral, tetrahedral, octahedral, and icosahedral architectures with 2, 6, 12, and 30 antibodies per nanocage match the corresponding computational models. Antibody nanocages targeting cell-surface receptors enhance signaling compared to free antibodies or Fc-fusions in DR5-mediated apoptosis, Tie2-mediated angiogenesis, CD40 activation, and T cell proliferation; nanocage assembly also increases SARS-CoV-2 pseudovirus neutralization by α-SARS-CoV-2 monoclonal antibodies and Fc-ACE2 fusion proteins. We anticipate that the ability to assemble arbitrary antibodies without need for covalent modification into highly ordered assemblies with different geometries and valencies will have broad impact in biology and medicine.

4.
Sci Immunol ; 4(35)2019 05 17.
Article in English | MEDLINE | ID: mdl-31101673

ABSTRACT

Effective vaccines inducing lifelong protection against many important infections such as respiratory syncytial virus (RSV), HIV, influenza virus, and Epstein-Barr virus (EBV) are not yet available despite decades of research. As an alternative to a protective vaccine, we developed a genetic engineering strategy in which CRISPR-Cas9 was used to replace endogenously encoded antibodies with antibodies targeting RSV, HIV, influenza virus, or EBV in primary human B cells. The engineered antibodies were expressed efficiently in primary B cells under the control of endogenous regulatory elements, which maintained normal antibody expression and secretion. Using engineered mouse B cells, we demonstrated that a single transfer of B cells engineered to express an antibody against RSV resulted in potent and durable protection against RSV infection in RAG1-deficient mice. This approach offers the opportunity to achieve sterilizing immunity against pathogens for which traditional vaccination has failed to induce or maintain protective antibody responses.


Subject(s)
Antibodies, Monoclonal/immunology , Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , B-Lymphocytes/immunology , Metabolic Engineering/methods , Respiratory Syncytial Virus Infections/therapy , Respiratory Syncytial Virus, Human/immunology , 3T3 Cells , Adoptive Transfer/methods , Animals , CRISPR-Cas Systems , Female , HEK293 Cells , Homeodomain Proteins/genetics , Humans , Male , Mice , Mice, Inbred BALB C , Mice, Knockout , Respiratory Syncytial Virus Infections/virology
SELECTION OF CITATIONS
SEARCH DETAIL