Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 49
Filter
1.
J Immunol ; 204(1): 199-211, 2020 01 01.
Article in English | MEDLINE | ID: mdl-31801817

ABSTRACT

Programmed cell death 1 (PD-1) is critical for T regulatory cells (Tregs) to maintain peripheral tolerance to self-antigens. In the tumor microenvironment, interaction between PD-1 and its ligands supports tumor immune evasion. Pembrolizumab blocks interactions of PD-1 with its ligands, enhancing antitumor and clinical responses. We and others have reported that pembrolizumab does not affect function or phenotype of thymic-derived Tregs; however, little is known about its effect on extrathymic differentiation of peripheral Tregs. In this study, we investigated the effect of pembrolizumab on in vitro-induced Tregs (iTregs). Our work showed that PD-1 blockade interferes with iTreg differentiation and has no potential effect on the stability of FOXP3 after differentiation. Additionally, we found that both nontreated and pembrolizumab-treated iTregs were suppressive. However, pembrolizumab-treated iTregs were relatively less suppressive in higher Treg ratios and failed to produce IL-10 compared with their nontreated counterparts. Different methods including transcriptomic analyses confirmed that the downregulation of FOXP3 was mediated by activating mTOR and STAT1 and inhibiting MAPK pathways, shifting the iTreg polarization in favor of Th1 and Th17 subsets. To confirm the role of mTOR activation, we found that rapamycin diminished the effect of pembrolizumab-mediated downregulation of FOXP3. Ingenuity pathway analysis revealed that pembrolizumab-treated iTregs showed upregulation of genes promoting DNA repair and immune cell trafficking, in addition to downregulation of genes supporting cellular assembly and organization. To our knowledge, this is the first study to show that pembrolizumab interferes with differentiation of human FOXP3+ iTregs and to disclose some of the molecular pathways involved.


Subject(s)
Antibodies, Monoclonal, Humanized/pharmacology , Antineoplastic Agents, Immunological/pharmacology , Forkhead Transcription Factors/antagonists & inhibitors , T-Lymphocytes, Regulatory/drug effects , TOR Serine-Threonine Kinases/immunology , Cell Differentiation/drug effects , Cell Differentiation/immunology , Demethylation/drug effects , Forkhead Transcription Factors/immunology , Healthy Volunteers , Humans , Protein Stability/drug effects , T-Lymphocytes, Regulatory/immunology , Up-Regulation/drug effects
2.
Int J Mol Sci ; 24(1)2022 Dec 21.
Article in English | MEDLINE | ID: mdl-36613572

ABSTRACT

Maturity-onset diabetes of the young (MODY) is a rare monogenic form of diabetes mellitus. In this study, we estimated the prevalence and genetic spectrum of MODY in the Middle Eastern population of Qatar using whole-genome sequencing (WGS) of 14,364 subjects from the population-based Qatar biobank (QBB) cohort. We focused our investigations on 14 previously identified genes ascribed to the cause of MODY and two potentially novel MODY-causing genes, RFX6 and NKX6-1. Genetic variations within the 16 MODY-related genes were assessed for their pathogenicity to identify disease-causing mutations. Analysis of QBB phenotype data revealed 72 subjects (0.5%) with type 1 diabetes, 2915 subjects (20.3%) with type 2 diabetes and 11,377 (79.2%) without diabetes. We identified 22 mutations in 67 subjects that were previously reported in the Human Genetic Mutation Database (HGMD) as disease-causing (DM) or likely disease causing (DM?) for MODY. We also identified 28 potentially novel MODY-causing mutations, predicted to be among the top 1% most deleterious mutations in the human genome, which showed complete (100%) disease penetrance in 34 subjects. Overall, we estimated that MODY accounts for around 2.2-3.4% of diabetes patients in Qatar. This is the first population-based study to determine the genetic spectrum and estimate the prevalence of MODY in the Middle East. Further research to characterize the newly identified mutations is warranted.


Subject(s)
Diabetes Mellitus, Type 2 , Humans , Diabetes Mellitus, Type 2/epidemiology , Diabetes Mellitus, Type 2/genetics , Qatar/epidemiology , Hepatocyte Nuclear Factor 1-alpha/genetics , Mutation
3.
Int J Mol Sci ; 23(6)2022 Mar 21.
Article in English | MEDLINE | ID: mdl-35328807

ABSTRACT

Ischemic strokes are associated with significant morbidity and mortality, but currently there are no reliable prognostic or diagnostic blood biomarkers. MicroRNAs (miRNAs) regulate various molecular pathways and may be used as biomarkers. Using RNA-Seq, we conducted comprehensive circulating miRNA profiling in patients with ischemic stroke compared with healthy controls. Samples were collected within 24 h of clinical diagnosis. Stringent analysis criteria of discovery (46 cases and 95 controls) and validation (47 cases and 96 controls) cohorts led to the identification of 10 differentially regulated miRNAs, including 5 novel miRNAs, with potential diagnostic significance. Hsa-miR-451a was the most significantly upregulated miRNA (FC; 4.8, FDR; 3.78 × 10-85), while downregulated miRNAs included hsa-miR-574-5p and hsa-miR-142-3p, among others. Importantly, we computed a multivariate classifier based on the identified miRNA panel to differentiate between ischemic stroke patients and healthy controls, which showed remarkably high sensitivity (0.94) and specificity (0.99). The area under the ROC curve was 0.97 and it is superior to other current available biomarkers. Moreover, in samples collected one month following stroke, we found sustained upregulation of hsa-miR-451a and downregulation of another 5 miRNAs. Lastly, we report 3 miRNAs that were significantly associated with poor clinical outcomes of stroke, as defined by the modified Rankin scores. The clinical translation of the identified miRNA panel may be explored further.


Subject(s)
Circulating MicroRNA , Ischemic Stroke , MicroRNAs , Stroke , Biomarkers , Circulating MicroRNA/genetics , Gene Expression Profiling , Humans , Ischemic Stroke/diagnosis , Ischemic Stroke/genetics , MicroRNAs/genetics , ROC Curve , Stroke/genetics
4.
Int J Mol Sci ; 24(1)2022 Dec 21.
Article in English | MEDLINE | ID: mdl-36613546

ABSTRACT

Transient ischemic attack (TIA) refers to a momentary neurologic deficit caused by focal cerebral, spinal or retinal ischemic insult. TIA is associated with a high risk of impending acute ischemic stroke (AIS), a neurologic dysfunction characterized by focal cerebral, spinal or retinal infarction. Understanding the differences in molecular pathways in AIS and TIA has merit for deciphering the underlying cause for neuronal deficits with long-term effects and high risks of morbidity and mortality. In this study, we performed comprehensive investigations into the circulating microRNA (miRNA) profiles of AIS (n = 191) and TIA (n = 61) patients. We performed RNA-Seq on serum samples collected within 24 hrs of clinical diagnosis and randomly divided the study populations into discovery and validation cohorts. We identified a panel of 11 differentially regulated miRNAs at FDR < 0.05. Hsa-miR-548c-5p, -20a-5p, -18a-5p, -484, -652-3p, -486-3p, -24-3p, -181a-5p and -222-3p were upregulated, while hsa-miR-500a-3p and -206 were downregulated in AIS patients compared to TIA patients. We also probed the previously validated gene targets of our identified miRNA panel to highlight the molecular pathways affected in AIS. Moreover, we developed a multivariate classifier with potential utilization as a discriminative biomarker for AIS and TIA patients. The underlying molecular pathways in AIS compared to TIA may be explored further in functional studies for therapeutic targeting in clinical translation.


Subject(s)
Circulating MicroRNA , Ischemic Attack, Transient , Ischemic Stroke , MicroRNAs , Stroke , Humans , Biomarkers , Circulating MicroRNA/genetics , Ischemic Attack, Transient/genetics , Ischemic Stroke/genetics , MicroRNAs/metabolism , Stroke/therapy
5.
Semin Cancer Biol ; 65: 1-12, 2020 10.
Article in English | MEDLINE | ID: mdl-31265893

ABSTRACT

Interactions between immune checkpoints (ICs) and their ligands negatively regulate T cell activation pathways involved in physiological immune responses against specific antigens. ICs and their ligands are frequently upregulated in the tumor microenvironment (TME) of various malignancies, and they represent significant barriers for induction of effective anti-tumor immune responses. Several IC inhibitors (ICIs) have been developed, with some currently in clinical trials and others have been approved for the treatment of different cancers. However, tumor cells are able to counteract the activity of ICIs and can commission additional inhibitory pathways via expression of other ICs/ligands within the TME. This review discusses the expression of various ICs/ligands in the TME and their impact on tumor immune evasion. Additionally, we discuss various regulatory mechanisms, including genetic and epigenetic, and other modulatory factors including hypoxia and the presence of immunosuppressive populations in the TME, which result in upregulation of ICs in various cancers. Moreover, we discuss the prognostic significance of ICs and their ligands, and the potential strategies to enhance treatment responses to ICIs. This review aims to advance our current knowledge on the role of ICs in the TME and the clinical benefits of targeting them.


Subject(s)
B7-H1 Antigen/immunology , CTLA-4 Antigen/immunology , Immune Checkpoint Inhibitors/therapeutic use , Neoplasms/drug therapy , B7-H1 Antigen/antagonists & inhibitors , CTLA-4 Antigen/antagonists & inhibitors , Humans , Lymphocytes, Tumor-Infiltrating/drug effects , Lymphocytes, Tumor-Infiltrating/immunology , Neoplasms/pathology , T-Lymphocytes/drug effects , T-Lymphocytes/immunology , T-Lymphocytes, Regulatory/drug effects , Tumor Microenvironment/immunology
6.
Immunology ; 162(1): 30-43, 2021 01.
Article in English | MEDLINE | ID: mdl-32935333

ABSTRACT

Coronavirus disease 2019 (COVID-19) is caused by SARS-CoV-2, a novel coronavirus strain. Some studies suggest that COVID-19 could be an immune-related disease, and failure of effective immune responses in initial stages of viral infection could contribute to systemic inflammation and tissue damage, leading to worse disease outcomes. T cells can act as a double-edge sword with both pro- and anti-roles in the progression of COVID-19. Thus, better understanding of their roles in immune responses to SARS-CoV-2 infection is crucial. T cells primarily react to the spike protein on the coronavirus to initiate antiviral immunity; however, T-cell responses can be suboptimal, impaired or excessive in severe COVID-19 patients. This review focuses on the multifaceted roles of T cells in COVID-19 pathogenesis and rationalizes their significance in eliciting appropriate antiviral immune responses in COVID-19 patients and unexposed individuals. In addition, we summarize the potential therapeutic approaches related to T cells to treat COVID-19 patients. These include adoptive T-cell therapies, vaccines activating T-cell responses, recombinant cytokines, Th1 activators and Th17 blockers, and potential utilization of immune checkpoint inhibitors alone or in combination with anti-inflammatory drugs to improve antiviral T-cell responses against SARS-CoV-2.


Subject(s)
COVID-19/immunology , COVID-19/therapy , Immunity, Cellular , Immunotherapy , Lung/immunology , SARS-CoV-2/immunology , T-Lymphocytes/immunology , Adoptive Transfer , Animals , Antiviral Agents/therapeutic use , COVID-19/virology , COVID-19 Vaccines/therapeutic use , Host-Pathogen Interactions , Humans , Immunity, Cellular/drug effects , Immunologic Factors/therapeutic use , Lung/drug effects , Lung/virology , SARS-CoV-2/drug effects , SARS-CoV-2/pathogenicity , T-Lymphocytes/drug effects , T-Lymphocytes/transplantation , T-Lymphocytes/virology , COVID-19 Drug Treatment
7.
Cancer Immunol Immunother ; 70(8): 2103-2121, 2021 Aug.
Article in English | MEDLINE | ID: mdl-33532902

ABSTRACT

Metabolic dysregulation in the hypoxic tumor microenvironment (TME) is considered as a hallmark of solid tumors, leading to changes in biosynthetic pathways favoring onset, survival and proliferation of malignant cells. Within the TME, hypoxic milieu favors metabolic reprogramming of tumor cells, which subsequently affects biological properties of tumor-infiltrating immune cells. T regulatory cells (Tregs), including both circulating and tissue-resident cells, are particularly susceptible to hypoxic metabolic signaling that can reprogram their biological and physicochemical properties. Furthermore, metabolic reprogramming modifies Tregs to utilize alternative substrates and undergo a plethora of metabolic events to meet their energy demands. Major impact of this metabolic reprogramming can result in differentiation, survival, excessive secretion of immunosuppressive cytokines and proliferation of Tregs within the TME, which in turn dampen anti-tumor immune responses. Studies on fine-tuning of Treg metabolism are challenging due to heterogenicity of tissue-resident Tregs and their dynamic functions. In this review, we highlight tumor intrinsic and extrinsic factors, which can influence Treg metabolism in the hypoxic TME. Moreover, we focus on metabolic reprogramming of Tregs that could unveil potential regulatory networks favoring tumorigenesis/progression, and provide novel insights, including inhibitors against acetyl-coA carboxylase 1 and transforming growth factor beta into targeting Treg metabolism for therapeutic benefits.


Subject(s)
Cellular Reprogramming/immunology , T-Lymphocytes, Regulatory/immunology , Tumor Microenvironment/immunology , Animals , Carcinogenesis/immunology , Cell Differentiation/immunology , Humans
8.
Cancer Immunol Immunother ; 70(3): 803-815, 2021 Mar.
Article in English | MEDLINE | ID: mdl-33000418

ABSTRACT

Colorectal cancer (CRC) has high mortality rates, especially in patients with advanced disease stages, who often do not respond to therapy. The cellular components of the tumor microenvironment are essentially responsible for dictating disease progression and response to therapy. Expansion of different myeloid cell subsets in CRC tumors has been reported previously. However, tumor-infiltrating myeloid cells have both pro- and anti-tumor roles in disease progression. In this study, we performed transcriptomic profiling of cells of myeloid lineage (CD33+) from bulk CRC tumors at varying disease stages. We identified differentially expressed genes and pathways between CRC patients with advanced stage and early stages. We found that pro-angiogenic and hypoxia-related genes were upregulated, while genes related to immune and inflammatory responses were downregulated in CD33+ myeloid cells from patients with advanced stages, implying that immune cell recruitment and activation could be compromised in advanced disease stages. Moreover, we identified a unique "poor prognosis CD33+ gene signature" by aligning top upregulated and downregulated genes in tumor-infiltrating myeloid cells from our analyses with data from The Cancer Genome Atlas. Our results showed that this gene signature is an independent prognostic indicator for disease-specific survival in CRC patients, potentially reflecting its clinical importance.


Subject(s)
Colorectal Neoplasms/genetics , Colorectal Neoplasms/metabolism , Gene Expression Regulation, Neoplastic , Myeloid Cells/metabolism , Sialic Acid Binding Ig-like Lectin 3/metabolism , Biomarkers , Colorectal Neoplasms/pathology , Female , Gene Expression Profiling , Genomics/methods , Humans , Male , Myeloid Cells/pathology , Neoplasm Grading , Neoplasm Staging , Sialic Acid Binding Ig-like Lectin 3/genetics
9.
Immunol Invest ; 50(8): 952-963, 2021 Nov.
Article in English | MEDLINE | ID: mdl-32727251

ABSTRACT

Myeloid-derived suppressor cells (MDSCs) are a heterogeneous population of cells with potent immunosuppressive functions, which can inhibit the activation of immune responses under a steady-state condition and pathological conditions. We performed transcriptomic profiling of circulating CD33+HLA-DR+ myeloid antigen-presenting cells (APCs) and CD33+HLA-DR- myeloid cells (potentially MDSCs) in healthy individuals. We sorted both subpopulations from peripheral blood mononuclear cells (PBMCs) of 10 healthy donors and performed RNA sequencing (RNA-Seq). We found that several signaling pathways associated with the positive regulation of immune responses, such as antigen presentation/processing, FcγR-mediated phagocytosis and immune cell trafficking, phosphoinositide 3-kinase (PI3K)/Akt signaling, DC maturation, triggering receptor expressed on myeloid cells 1 (TREM1) signaling, nuclear factor of activated T cells (NFAT) and IL-8 signaling were downregulated in CD33+HLA-DR- myeloid cells. In contrast, pathways implicated in tumor suppression and anti-inflammation, including peroxisome proliferator-activated receptor (PPAR) and phosphatase and tensin homolog (PTEN), were upregulated in CD33+HLA-DR- myeloid cells. These data indicate that PPAR/PTEN axis could be upregulated in myeloid cells to keep the immune system in check in normal physiological conditions. Our data reveal some of the molecular and functional differences between CD33+HLA-DR+ APCs and CD33+HLA-DR- myeloid cells in a steady-state condition, reflecting the potential suppressive function of CD33+HLA-DR- myeloid cells to maintain immune tolerance. For future studies, the same methodological approach could be applied to perform transcriptomic profiling of myeloid subsets in pathological conditions.


Subject(s)
Leukocytes, Mononuclear , Phosphatidylinositol 3-Kinases , Antigen-Presenting Cells , HLA-DR Antigens/genetics , Humans , Myeloid Cells , Transcriptome
10.
Clin Immunol ; 215: 108429, 2020 06.
Article in English | MEDLINE | ID: mdl-32320745

ABSTRACT

T-cell immunoglobulin and mucin-domain containing-3 (TIM-3) is an inhibitory immune checkpoint, which suppresses anti-tumor immune responses. TIM-3 expression on different immune cells in periphery and tumor microenvironment (TME) of colorectal cancer (CRC) patients has not been fully investigated. We found that TIM-3 was mainly expressed on monocytic myeloid cells (MMCs) and antigen-presenting cells (APCs) in circulation but was mainly expressed on T cells and APCs in the TME. Additionally, TIM-3- T cells co-expressed higher levels of PD-1 than TIM-3+ T cells in normal tissue. In contrast, TIM-3+ T cells in the TME showed significantly higher PD-1 expression. Interestingly, there was a trend towards increased levels of TIM-3+ APCs with disease stages; however, levels of TIM-3+ T cells were decreased with disease stages in the TME. This study shows the differential expression of TIM-3 on different immune cells in circulation and TME of CRC patients, and their associations with disease stages.


Subject(s)
Colorectal Neoplasms/blood , Colorectal Neoplasms/metabolism , Hepatitis A Virus Cellular Receptor 2/blood , Tumor Microenvironment/physiology , Antigen-Presenting Cells/metabolism , Biomarkers, Tumor/blood , Biomarkers, Tumor/metabolism , Cells, Cultured , Humans , Monocytes/metabolism , Myeloid Cells/metabolism , Programmed Cell Death 1 Receptor/metabolism , T-Lymphocytes/metabolism
11.
Cancer Immunol Immunother ; 69(3): 449-463, 2020 Mar.
Article in English | MEDLINE | ID: mdl-31932876

ABSTRACT

Lactate dehydrogenase C (LDHC) is an archetypical cancer testis antigen with limited expression in adult tissues and re-expression in tumors. This restricted expression pattern together with the important role of LDHC in cancer metabolism renders LDHC a potential target for immunotherapy. This study is the first to investigate the immunogenicity of LDHC using T cells from healthy individuals. LDHC-specific T cell responses were induced by in vitro stimulation with synthetic peptides, or by priming with autologous peptide-pulsed dendritic cells. We evaluated T cell activation by IFN-γ ELISpot and determined cytolytic activity of HLA-A*0201-restricted T cells in breast cancer cell co-cultures. In vitro T cell stimulation induced IFN-γ secretion in response to numerous LDHC-derived peptides. Analysis of HLA-A*0201 responses revealed a significant T cell activation after stimulation with peptide pools 2 (PP2) and 8 (PP8). The PP2- and PP8-specific T cells displayed cytolytic activity against breast cancer cells with endogenous LDHC expression within a HLA-A*0201 context. We identified peptides LDHC41-55 and LDHC288-303 from PP2 and PP8 to elicit a functional cellular immune response. More specifically, we found an increase in IFN-γ secretion by CD8 + T cells and cancer-cell-killing of HLA-A*0201/LDHC positive breast cancer cells by LDHC41-55- and LDHC288-303-induced T cells, albeit with a possible antigen recognition threshold. The majority of induced T cells displayed an effector memory phenotype. To conclude, our findings support the rationale to assess LDHC as a targetable cancer testis antigen for immunotherapy, and in particular the HLA-A*0201 restricted LDHC41-55 and LDHC288-303 peptides within LDHC.


Subject(s)
Epitopes, T-Lymphocyte/immunology , HLA-A2 Antigen/immunology , Immunotherapy/methods , L-Lactate Dehydrogenase/immunology , Cell Line, Tumor , Female , Humans , Isoenzymes/immunology , Male
12.
Cancer Immunol Immunother ; 69(10): 1989-1999, 2020 Oct.
Article in English | MEDLINE | ID: mdl-32393998

ABSTRACT

Despite recent advances in colorectal cancer (CRC) treatment, a large proportion of patients show limited responses to therapies, especially in advanced stages. There is an urgent need to identify prognostic biomarkers and/or therapeutic targets in advanced stages, aiming to improve the efficacy of current treatments. We aimed to determine prognostic biomarkers in tumor tissue and circulation of CRC patients, with a special focus on T cell exhaustion markers. We found that mRNA levels of PD-1, TIM-3, CTLA-4, TIGIT, CD160, CD244, KLRG1, TOX2, TOX3, Ki-67, and PRDM1 were elevated in CRC tumor tissues. We also investigated differences in gene expression between early and advanced disease stages. We found that TOX and potentially TIM-3, CTLA-4, VISTA, TIGIT, KLRG1, TOX2, SIRT1, Ki-67, and Helios mRNA levels in tumor tissue were elevated in advanced disease stages, suggesting their potential roles in CRC progression. In contrast, PD-1 and CD160 levels in tumor tissue were downregulated in advanced stages. In the circulation of CRC patients, mRNA levels of PD-1, VISTA and LAG-3 were higher than those of healthy individuals. Moreover, in circulation, PD-1, CTLA-4 and TIGIT mRNA levels were reduced in advanced stages. Interestingly, levels of PD-1 in both tumor tissue and circulation were reduced in advanced stages, suggesting that targeting PD-1 in patients with advanced stages could be less effective. Altogether, these findings suggest some potential T cell exhaustion markers that could be utilized as prognostic biomarkers and/or therapeutic targets for CRC. However, further investigations and validations in larger cohorts are required to confirm these findings.


Subject(s)
Biomarkers, Tumor/blood , CTLA-4 Antigen/blood , Colorectal Neoplasms/immunology , Lymphocytes, Tumor-Infiltrating/immunology , Programmed Cell Death 1 Receptor/blood , Receptors, Immunologic/blood , T-Lymphocytes/immunology , Adult , Aged , Aged, 80 and over , Biomarkers, Tumor/genetics , CTLA-4 Antigen/genetics , Case-Control Studies , Colorectal Neoplasms/blood , Colorectal Neoplasms/genetics , Colorectal Neoplasms/pathology , Female , Follow-Up Studies , Gene Expression Regulation, Neoplastic , Humans , Lymphocytes, Tumor-Infiltrating/metabolism , Lymphocytes, Tumor-Infiltrating/pathology , Male , Middle Aged , Neoplasm Staging , Programmed Cell Death 1 Receptor/genetics , Receptors, Immunologic/genetics , T-Lymphocytes/metabolism , T-Lymphocytes/pathology , Young Adult
13.
Immunol Cell Biol ; 96(9): 888-897, 2018 10.
Article in English | MEDLINE | ID: mdl-29635843

ABSTRACT

Immune evasion is a characteristic of most human malignancies and is induced via various mechanisms. Immunosuppressive cells, including myeloid-derived suppressor cells (MDSC) and regulatory T cells (Treg), are key mediators in assisting tumors to escape immune surveillance. Expansion of MDSC, Treg and elevated levels of immune checkpoints (IC) are frequently detected in the tumor microenvironment and periphery of cancer patients. Various therapeutic agents have been shown to target MDSC and to block IC for inducing anti-tumor immunity and reversal of tumor immune escape. Importantly, some recent studies have shown that MDSC targeting improves the efficacy of IC blockade in cancer therapy. However, there is a pressing need to improve our understanding of the distinct role of these cells to develop combination therapy that attacks tumor cells from all frontiers to improve cancer therapeutics. Herein, we discuss the role of MDSC in cancer progression, interactions with IC in the context of anti-cancer immunity and the current therapeutic strategies to target MDSC and block IC in cancer.


Subject(s)
Immunotherapy , Myeloid-Derived Suppressor Cells/immunology , Neoplasms/therapy , T-Lymphocytes, Regulatory/immunology , Animals , Humans , Immune Tolerance , Neoplasms/immunology , Tumor Escape , Tumor Microenvironment
14.
Cancer Immunol Immunother ; 66(6): 753-764, 2017 Jun.
Article in English | MEDLINE | ID: mdl-28283696

ABSTRACT

Pathological conditions including cancers lead to accumulation of a morphological mixture of highly immunosuppressive cells termed as myeloid-derived suppressor cells (MDSC). The lack of conclusive markers to identify human MDSC, due to their heterogeneous nature and close phenotypical and functional proximity with other cell subsets, made it challenging to identify these cells. Nevertheless, expansion of MDSC has been reported in periphery and tumor microenvironment of various cancers. The majority of studies on breast cancers were performed on murine models and hence limited literature is available on the relation of MDSC accumulation with clinical settings in breast cancer patients. The aim of this study was to investigate levels and phenotypes of myeloid cells in peripheral blood (n = 23) and tumor microenvironment of primary breast cancer patients (n = 7), compared with blood from healthy donors (n = 21) and paired non-tumor normal breast tissues from the same patients (n = 7). Using multicolor flow cytometric assays, we found that breast cancer patients had significantly higher levels of tumor-infiltrating myeloid cells, which comprised of granulocytes (P = 0.022) and immature cells that lack the expression of markers for fully differentiated monocytes or granulocytes (P = 0.016). Importantly, this expansion was not reflected in the peripheral blood. The immunosuppressive potential of these cells was confirmed by expression of Arginase 1 (ARG1), which is pivotal for T-cell suppression. These findings are important for developing therapeutic modalities to target mechanisms employed by immunosuppressive cells that generate an immune-permissive environment for the progression of cancer.


Subject(s)
Breast Neoplasms/pathology , Breast/pathology , Myeloid Cells/pathology , Tumor Escape , Tumor Microenvironment/immunology , Adult , Aged , Arginase/metabolism , Breast/immunology , Breast/metabolism , Breast Neoplasms/blood , Breast Neoplasms/immunology , Case-Control Studies , Female , Humans , Middle Aged , Myeloid Cells/immunology , Myeloid Cells/metabolism , Neoplasm Grading , Neoplasm Invasiveness , Neoplasm Staging , Prognosis , Young Adult
16.
Front Endocrinol (Lausanne) ; 15: 1384103, 2024.
Article in English | MEDLINE | ID: mdl-38938516

ABSTRACT

Insulin resistance (IR) and beta cell dysfunction are the major drivers of type 2 diabetes (T2D). Genome-Wide Association Studies (GWAS) on IR have been predominantly conducted in European populations, while Middle Eastern populations remain largely underrepresented. We conducted a GWAS on the indices of IR (HOMA2-IR) and beta cell function (HOMA2-%B) in 6,217 non-diabetic individuals from the Qatar Biobank (QBB; Discovery cohort; n = 2170, Replication cohort; n = 4047) with and without body mass index (BMI) adjustment. We also developed polygenic scores (PGS) for HOMA2-IR and compared their performance with a previously derived PGS for HOMA-IR (PGS003470). We replicated 11 loci that have been previously associated with HOMA-IR and 24 loci that have been associated with HOMA-%B, at nominal statistical significance. We also identified a novel locus associated with beta cell function near VEGFC gene, tagged by rs61552983 (P = 4.38 × 10-8). Moreover, our best performing PGS (Q-PGS4; Adj R2 = 0.233 ± 0.014; P = 1.55 x 10-3) performed better than PGS003470 (Adj R2 = 0.194 ± 0.014; P = 5.45 x 10-2) in predicting HOMA2-IR in our dataset. This is the first GWAS on HOMA2 and the first GWAS conducted in the Middle East focusing on IR and beta cell function. Herein, we report a novel locus in VEGFC that is implicated in beta cell dysfunction. Inclusion of under-represented populations in GWAS has potentials to provide important insights into the genetic architecture of IR and beta cell function.


Subject(s)
Diabetes Mellitus, Type 2 , Genome-Wide Association Study , Insulin Resistance , Multifactorial Inheritance , Humans , Insulin Resistance/genetics , Female , Male , Middle Aged , Diabetes Mellitus, Type 2/genetics , Adult , Qatar/epidemiology , Polymorphism, Single Nucleotide , Insulin-Secreting Cells/metabolism , Aged , Body Mass Index , Cohort Studies , Genetic Predisposition to Disease
17.
BMC Med Genomics ; 17(1): 115, 2024 Apr 29.
Article in English | MEDLINE | ID: mdl-38685053

ABSTRACT

BACKGROUND: The genetic basis of type 2 diabetes (T2D) is under-investigated in the Middle East, despite the rapidly growing disease prevalence. We aimed to define the genetic determinants of T2D in Qatar. METHODS: Using whole genome sequencing of 11,436 participants (2765 T2D cases and 8671 controls) from the population-based Qatar Biobank (QBB), we conducted a genome-wide association study (GWAS) of T2D with and without body mass index (BMI) adjustment. RESULTS: We replicated 93 known T2D-associated loci in a BMI-unadjusted model, while 96 known loci were replicated in a BMI-adjusted model. The effect sizes and allele frequencies of replicated SNPs in the Qatari population generally concurred with those from European populations. We identified a locus specific to our cohort located between the APOBEC3H and CBX7 genes in the BMI-unadjusted model. Also, we performed a transethnic meta-analysis of our cohort with a previous GWAS on T2D in multi-ancestry individuals (180,834 T2D cases and 1,159,055 controls). One locus in DYNC2H1 gene reached genome-wide significance in the meta-analysis. Assessing polygenic risk scores derived from European- and multi-ancestries in the Qatari population showed higher predictive performance of the multi-ancestry panel compared to the European panel. CONCLUSION: Our study provides new insights into the genetic architecture of T2D in a Middle Eastern population and identifies genes that may be explored further for their involvement in T2D pathogenesis.


Subject(s)
Diabetes Mellitus, Type 2 , Genetic Predisposition to Disease , Genome-Wide Association Study , Polymorphism, Single Nucleotide , Humans , Diabetes Mellitus, Type 2/genetics , Qatar/epidemiology , Male , Female , Middle Aged , Genetic Loci , Case-Control Studies , Body Mass Index , Ethnicity/genetics
18.
Cancers (Basel) ; 14(13)2022 Jun 29.
Article in English | MEDLINE | ID: mdl-35804964

ABSTRACT

T cells in the tumor microenvironment (TME) have diverse roles in anti-tumor immunity, including orchestration of immune responses and anti-tumor cytotoxic attack. However, different T cell subsets may have opposing roles in tumor progression, especially in inflammation-related cancers such as colorectal cancer (CRC). In this study, we phenotypically characterized CD3+CD4- (CD8+) T cells in colorectal tumor tissues (TT), normal colon tissues (NT) and in circulation of CRC patients. We investigated the expression levels of key immune checkpoints (ICs) and Treg-related markers in CD8+ T cells. Importantly, we investigated associations between different tumor-infiltrating CD8+ T cell subpopulations and disease-free survival (DFS) in CRC patients. We found that FoxP3 expression and ICs including PD-1, CTLA-4, TIM-3, and LAG-3 were significantly increased in tumor-infiltrating CD8+ T cells compared with NT and peripheral blood. In the TME, we found that TIM-3 expression was significantly increased in patients with early stages and absent lymphovascular invasion (LVI) compared to patients with advanced stages and LVI. Importantly, we report that high levels of certain circulating CD8+ T cell subsets (TIM-3-expressing, FoxP3-Helios-TIM-3+ and FoxP3-Helios+TIM-3+ cells) in CRC patients were associated with better DFS. Moreover, in the TME, we report that elevated levels of CD25+ and TIM-3+ T cells, and FoxP3+Helios-TIM-3+ Tregs were associated with better DFS.

19.
Front Genet ; 13: 927504, 2022.
Article in English | MEDLINE | ID: mdl-35910211

ABSTRACT

Familial hypercholesterolemia (FH) is an inherited disease characterized by reduced efficiency of low-density lipoprotein-cholesterol (LDL-C) removal from the blood and, consequently, an increased risk of life-threatening early cardiovascular complications. In Qatar, the prevalence of FH has not been determined and the disease, as in many countries, is largely underdiagnosed. In this study, we combined whole-genome sequencing data from the Qatar Genome Program with deep phenotype data from Qatar Biobank for 14,056 subjects to determine the genetic spectrum and estimate the prevalence of FH in Qatar. We used the Dutch Lipid Clinic Network (DLCN) as a diagnostic tool and scrutinized 11 FH-related genes for known pathogenic and possibly pathogenic mutations. Results revealed an estimated prevalence of 0.8% (1:125) for definite/probable cases of FH in the Qatari population. We detected 16 known pathogenic/likely pathogenic mutations in LDLR and one in PCSK9; all in a heterozygous state with high penetrance. The most common mutation was rs1064793799 (c.313+3A >C) followed by rs771019366 (p.Asp90Gly); both in LDLR. In addition, we identified 18 highly penetrant possibly pathogenic variants, of which 5 were Qatari-specific, in LDLR, APOB, PCSK9 and APOE, which are predicted to be among the top 1% most deleterious mutations in the human genome but further validations are required to confirm their pathogenicity. We did not detect any homozygous FH or autosomal recessive mutations in our study cohort. This pioneering study provides a reliable estimate of FH prevalence in Qatar based on a significantly large population-based cohort, whilst uncovering the spectrum of genetic variants associated with FH.

20.
Front Cardiovasc Med ; 9: 1024790, 2022.
Article in English | MEDLINE | ID: mdl-36277770

ABSTRACT

Stroke is the second leading cause of global mortality and continued efforts aim to identify predictive, diagnostic, or prognostic biomarkers to reduce the disease burden. Circulating microRNAs (miRNAs) have emerged as potential biomarkers in stroke. We performed comprehensive circulating miRNA profiling of ischemic stroke patients with or without type 2 diabetes mellitus (T2DM), an important risk factor associated with worse clinical outcomes in stroke. Serum samples were collected within 24 h of acute stroke diagnosis and circulating miRNAs profiled using RNA-Seq were compared between stroke patients with T2DM (SWDM; n = 92) and those without T2DM (SWoDM; n = 98). Our analysis workflow involved random allocation of study cohorts into discovery (n = 96) and validation (n = 94) datasets. Five miRNAs were found to be differentially regulated in SWDM compared to SWoDM patients. Hsa-miR-361-3p and -664a-5p were downregulated, whereas miR-423-3p, -140-5p, and -17-3p were upregulated. We also explored the gene targets of these miRNAs and investigated the downstream pathways associated with them to decipher the potential pathways impacted in stroke with diabetes as comorbidity. Overall, our novel findings provide important insights into the differentially regulated miRNAs, their associated pathways and potential utilization for clinical benefits in ischemic stroke patients with diabetes.

SELECTION OF CITATIONS
SEARCH DETAIL