Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 37
Filter
1.
Immunity ; 50(5): 1188-1201.e6, 2019 05 21.
Article in English | MEDLINE | ID: mdl-31053504

ABSTRACT

Lymph nodes (LNs) play critical roles in adaptive immunity by concentrating in one location the antigens, antigen-presenting cells, and antigen-responsive lymphocytes involved in such responses. Recent studies have revealed nonrandom localization of innate and adaptive immune cells within these organs, suggesting that microanatomical positioning optimizes responses involving sparse cooperating cells. Here, we report that the peripheral localization of LN cDC2 dendritic cells specialized for MHC-II antigen presentation is matched by a similarly biased paracortical distribution of CD4+ T cells directed by the chemoattractant receptor Ebi2. In the absence of Ebi2, CD4+ T cells lose their location bias and are delayed in antigen recognition, proliferative expansion, differentiation, direct effector activity, and provision of help for CD8+ T cell-mediated memory responses, limiting host defense and vaccine responses. These findings demonstrate evolutionary selection for distinct niches within the LN that promote cellular responses, emphasizing the critical link between fine-grained tissue organization and host defense.


Subject(s)
Adaptive Immunity/immunology , CD4-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/immunology , Dendritic Cells/immunology , Receptors, G-Protein-Coupled/metabolism , Animals , Antigen Presentation/immunology , Antigens/immunology , Cell Differentiation/immunology , Histocompatibility Antigens Class II/immunology , Lymph Nodes/cytology , Lymph Nodes/immunology , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , Mice, Knockout , Receptors, G-Protein-Coupled/genetics
2.
Cell ; 150(6): 1235-48, 2012 Sep 14.
Article in English | MEDLINE | ID: mdl-22980983

ABSTRACT

The lymphatic network that transports interstitial fluid and antigens to lymph nodes constitutes a conduit system that can be hijacked by invading pathogens to achieve systemic spread unless dissemination is blocked in the lymph node itself. Here, we show that a network of diverse lymphoid cells (natural killer cells, γδ T cells, natural killer T cells, and innate-like CD8+ T cells) are spatially prepositioned close to lymphatic sinus-lining sentinel macrophages where they can rapidly and efficiently receive inflammasome-generated IL-18 and additional cytokine signals from the pathogen-sensing phagocytes. This leads to rapid IFNγ secretion by the strategically positioned innate lymphocytes, fostering antimicrobial resistance in the macrophage population. Interference with this innate immune response loop allows systemic spread of lymph-borne bacteria. These findings extend our understanding of the functional significance of cellular positioning and local intercellular communication within lymph nodes while emphasizing the role of these organs as highly active locations of innate host defense.


Subject(s)
Bacterial Infections/immunology , Immunity, Innate , Lymph Nodes/cytology , Lymph Nodes/immunology , Virus Diseases/immunology , Animals , Host-Pathogen Interactions , Inflammasomes/metabolism , Interferon-gamma/immunology , Interleukin-18/immunology , Lymph/microbiology , Macrophages/immunology , Mice , Mice, Inbred C57BL , Mice, Knockout , Skin Diseases, Infectious/immunology , Specific Pathogen-Free Organisms , T-Lymphocytes/immunology
3.
J Immunol ; 211(2): 261-273, 2023 07 15.
Article in English | MEDLINE | ID: mdl-37314413

ABSTRACT

Mechanisms to control the immune response are important to pathogen evasion and host defense. Gram-negative bacteria are common pathogens that can activate host immune responses through their outer membrane component, LPS. Macrophage activation by LPS induces cell signals that promote hypoxic metabolism, phagocytosis, Ag presentation, and inflammation. Nicotinamide (NAM) is a vitamin B3 derivative and precursor in the formation of NAD, which is a required cofactor in cellular function. In this study, treatment of human monocyte-derived macrophages with NAM promoted posttranslational modifications that antagonized LPS-induced cell signals. Specifically, NAM inhibited AKT and FOXO1 phosphorylation, decreased p65/RelA acetylation, and promoted p65/RelA and hypoxia-inducible transcription factor-1α (HIF-1α) ubiquitination. NAM also increased prolyl hydroxylase domain 2 (PHD2) production, inhibited HIF-1α transcription, and promoted the formation of the proteasome, resulting in reduced HIF-1α stabilization, decreased glycolysis and phagocytosis, and reductions in NOX2 activity and the production of lactate dehydrogenase A. These NAM responses were associated with increased intracellular NAD levels formed through the salvage pathway. NAM and its metabolites may therefore decrease the inflammatory response of macrophages and protect the host against excessive inflammation but potentially increase injury through reduced pathogen clearance. Continued study of NAM cell signals in vitro and in vivo may provide insight into infection-associated host pathologies and interventions.


Subject(s)
Lipopolysaccharides , Niacinamide , Humans , Lipopolysaccharides/metabolism , Niacinamide/pharmacology , Niacinamide/metabolism , NAD/metabolism , Macrophages , Hypoxia/metabolism , Inflammation/metabolism , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism
4.
Immunity ; 42(1): 172-85, 2015 Jan 20.
Article in English | MEDLINE | ID: mdl-25607462

ABSTRACT

Upon infection, adaptive immune responses play catch-up with rapidly replicating pathogens. While mechanisms for efficient humoral responses to lymph-borne antigens have been characterized, the current paradigm for T cell responses to infections and particulate vaccines involves delayed migration of peripheral antigen-bearing dendritic cells (DCs) to lymph nodes (LNs), where they elicit effector T cell responses. Utilizing whole LN 3D imaging, histo-cytometry, and intravital 2-photon microscopy, we have identified a specialized population of DCs, enriched in the LN-resident CD11b(+) subset, which resides within the lymphatic sinus endothelium and scans lymph with motile dendrites. These DCs capture draining particles and present associated antigens to T lymphocytes, inducing T cell responses much sooner than and independently of migratory DCs. Thus, strategic DC subset positioning in LNs limits a potentially costly delay in generation of T cell responses to lymph-borne antigens, contributing to effective host defense. These findings are also highly relevant to vaccine design.


Subject(s)
Dendritic Cells/immunology , Lymphocyte Activation , Pseudomonas aeruginosa/immunology , T-Lymphocytes/immunology , Animals , Antigen Presentation , Antigens, Bacterial/immunology , CD11b Antigen/metabolism , Cell Movement , Cells, Cultured , Dendrites/immunology , Endothelium, Lymphatic/immunology , Humans , Imaging, Three-Dimensional , Lymph Nodes/immunology , Mice , Mice, Inbred Strains , Mice, Transgenic , Particulate Matter/immunology , Vaccination
5.
Proc Natl Acad Sci U S A ; 118(11)2021 03 16.
Article in English | MEDLINE | ID: mdl-33836561

ABSTRACT

Interferonopathies, interferon (IFN)-α/ß therapy, and caveolin-1 (CAV1) loss-of-function have all been associated with pulmonary arterial hypertension (PAH). Here, CAV1-silenced primary human pulmonary artery endothelial cells (PAECs) were proliferative and hypermigratory, with reduced cytoskeletal stress fibers. Signal transducers and activators of transcription (STAT) and phosphoinositide 3-kinase (PI3K)/protein kinase B (AKT) were both constitutively activated in these cells, resulting in a type I IFN-biased inflammatory signature. Cav1-/- mice that spontaneously develop pulmonary hypertension were found to have STAT1 and AKT activation in lung homogenates and increased circulating levels of CXCL10, a hallmark of IFN-mediated inflammation. PAH patients with CAV1 mutations also had elevated serum CXCL10 levels and their fibroblasts mirrored phenotypic and molecular features of CAV1-deficient PAECs. Moreover, immunofluorescence staining revealed endothelial CAV1 loss and STAT1 activation in the pulmonary arterioles of patients with idiopathic PAH, suggesting that this paradigm might not be limited to rare CAV1 frameshift mutations. While blocking JAK/STAT or AKT rescued aspects of CAV1 loss, only AKT inhibitors suppressed activation of both signaling pathways simultaneously. Silencing endothelial nitric oxide synthase (NOS3) prevented STAT1 and AKT activation induced by CAV1 loss, implicating CAV1/NOS3 uncoupling and NOS3 dysregulation in the inflammatory phenotype. Exogenous IFN reduced CAV1 expression, activated STAT1 and AKT, and altered the cytoskeleton of PAECs, implicating these mechanisms in PAH associated with autoimmune and autoinflammatory diseases, as well as IFN therapy. CAV1 insufficiency elicits an IFN inflammatory response that results in a dysfunctional endothelial cell phenotype and targeting this pathway may reduce pathologic vascular remodeling in PAH.


Subject(s)
Caveolin 1/genetics , Endothelium, Vascular/metabolism , Hypertension, Pulmonary/metabolism , Interferon Type I/metabolism , Animals , Cells, Cultured , Endothelium, Vascular/enzymology , Endothelium, Vascular/physiopathology , Gene Silencing , Humans , Hypertension, Pulmonary/physiopathology , Mice , Mice, Knockout , Proto-Oncogene Proteins c-akt/metabolism , RNA, Small Interfering/genetics , STAT1 Transcription Factor/metabolism , Signal Transduction
6.
J Infect Dis ; 228(1): 46-58, 2023 06 28.
Article in English | MEDLINE | ID: mdl-36801946

ABSTRACT

BACKGROUND: Data on cellular immune responses in persons with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection following vaccination are limited. The evaluation of these patients with SARS-CoV-2 breakthrough infections may provide insight into how vaccinations limit the escalation of deleterious host inflammatory responses. METHODS: We conducted a prospective study of peripheral blood cellular immune responses to SARS-CoV-2 infection in 21 vaccinated patients, all with mild disease, and 97 unvaccinated patients stratified based on disease severity. RESULTS: We enrolled 118 persons (aged 50 years [SD 14.5 years], 52 women) with SARS-CoV-2 infection. Compared to unvaccinated patients, vaccinated patients with breakthrough infections had a higher percentage of antigen-presenting monocytes (HLA-DR+), mature monocytes (CD83+), functionally competent T cells (CD127+), and mature neutrophils (CD10+); and lower percentages of activated T cells (CD38+), activated neutrophils (CD64+), and immature B cells (CD127+CD19+). These differences widened with increased disease severity in unvaccinated patients. Longitudinal analysis showed that cellular activation decreased over time but persisted in unvaccinated patients with mild disease at 8-month follow-up. CONCLUSIONS: Patients with SARS-CoV-2 breakthrough infections exhibit cellular immune responses that limit the progression of inflammatory responses and suggest mechanisms by which vaccination limits disease severity. These data may have implications for developing more effective vaccines and therapies. Clinical Trials Registration. NCT04401449.


Subject(s)
COVID-19 , Humans , Female , SARS-CoV-2 , Breakthrough Infections , Prospective Studies , Vaccination
7.
Immunity ; 40(2): 235-247, 2014 Feb 20.
Article in English | MEDLINE | ID: mdl-24440150

ABSTRACT

Activated T cells must mediate effector responses sufficiently to clear pathogens while avoiding excessive tissue damage. Here we have combined dynamic intravital microscopy with ex vivo assessments of T cell cytokine responses to generate a detailed spatiotemporal picture of CD4(+) T cell effector regulation in the skin. In response to antigen, effector T cells arrested transiently on antigen-presenting cells, briefly producing cytokine and then resuming migration. Antigen recognition led to upregulation of the programmed death-1 (PD-1) glycoprotein by T cells and blocking its canonical ligand, programmed death-ligand 1 (PD-L1), lengthened the duration of migration arrest and cytokine production, showing that PD-1 interaction with PD-L1 is a major negative feedback regulator of antigen responsiveness. We speculate that the immune system employs T cell recruitment, transient activation, and rapid desensitization to allow the T cell response to rapidly adjust to changes in antigen presentation and minimize collateral injury to the host.


Subject(s)
Feedback, Physiological , Inflammation/immunology , Models, Biological , Receptors, Antigen, T-Cell/immunology , T-Lymphocytes/immunology , Animals , Antigen Presentation , Antigens/immunology , Cell Movement , Flow Cytometry , Inflammation/physiopathology , Mice , Mice, Inbred C57BL , Skin/immunology
8.
Rev Med Virol ; 32(5): e2352, 2022 09.
Article in English | MEDLINE | ID: mdl-35416370

ABSTRACT

BACKGROUND: Determining how prior immune checkpoint inhibitor (ICI) therapy influences outcomes in cancer patients presenting with COVID-19 is essential for patient management but must account for confounding variables. METHODS: We performed a systematic review and meta-analysis of studies reporting adjusted effects of ICIs on survival, severe events, or hospitalisation in cancer patients with COVID-19 based on variables including age, gender, diabetes mellitus, hypertension (HTN), chronic obstructive pulmonary disease, and other comorbidities. When adjusted effects were unavailable, unadjusted data were analysed. RESULTS: Of 42 observational studies (38 retrospective), 7 reported adjusted outcomes for ICIs and 2 provided sufficient individual patient data to calculate adjusted outcomes. In eight studies, adjusted outcomes were based on ≤7 variables. Over all studies, only one included >100 ICI patients while 26 included <10. ICIs did not alter the odds ratio (95%CI) (OR) of death significantly (random effects model), across adjusted (n = 8) [1.31 (0.58-2.95) p = 0.46; I2  = 42%, p = 0.10], unadjusted (n = 30) [1.06 (0.85-1.32) p = 0.58; I2  = 0%, p = 0.76] or combined [1.09 (0.88;1.36) p = 0.41; I2  = 0%, p = 0.5)] studies. Similarly, ICIs did not alter severe events significantly across adjusted (n = 5) [1.20 (0.30-4.74) p = 0.73; I2  = 52%, p = 0.08], unadjusted (n = 19) [(1.23 (0.87-1.75) p = 0.23; I2  = 16%, p = 0.26] or combined [1.26 (0.90-1.77) p = 0.16; I2  = 25%, p = 0.14] studies. Two studies provided adjusted hospitalisation data and when combined with 13 unadjusted studies, ICIs did not alter hospitalisation significantly [1.19 (0.85-1.68) p = 029; I2  = 5%, p = 0.40]. Results of sensitivity analyses examining ICI effects based on 5 variables were inconclusive. Certainty of evidence was very low. CONCLUSIONS: Across studies with adjusted and unadjusted results, ICIs did not alter outcomes significantly. But studies with comprehensive adjusted outcome data controlling for confounding variables are necessary to determine whether ICIs impact COVID-19 outcomes in cancer patients.


Subject(s)
COVID-19 Drug Treatment , Neoplasms , Humans , Immune Checkpoint Inhibitors/therapeutic use , Neoplasms/complications , Neoplasms/drug therapy , Retrospective Studies
9.
Rev Med Virol ; 31(6): e2228, 2021 11.
Article in English | MEDLINE | ID: mdl-33694220

ABSTRACT

Chloroquine (CQ) and hydroxychloroquine (HCQ) have been used as antiviral agents for the treatment of severe acute respiratory syndrome coronavirus 2 (SARS-CoV2) infection. We performed a systematic review to examine whether prior clinical studies that compared the effects of CQ and HCQ to a control for the treatment of non-SARS-CoV2 infection supported the use of these agents in the present SARS-CoV2 outbreak. PubMed, EMBASE, Scopus and Web of Science (PROSPERO CRD42020183429) were searched from inception through 2 April 2020 without language restrictions. Of 1766 retrieved reports, 18 studies met our inclusion criteria, including 17 prospective controlled studies and one retrospective study. CQ or HCQ were compared to control for the treatment of infectious mononucleosis (EBV, n = 4), warts (human papillomavirus, n = 2), chronic HIV infection (n = 6), acute chikungunya infection (n = 1), acute dengue virus infection (n = 2), chronic HCV (n = 2), and as preventive measures for influenza infection (n = 1). Survival was not evaluated in any study. For HIV, the virus that was most investigated, while two early studies suggested HCQ reduced viral levels, four subsequent ones did not, and in two of these CQ or HCQ increased viral levels and reduced CD4 counts. Overall, three studies concluded CQ or HCQ were effective; four concluded further research was needed to assess the treatments' effectiveness; and 11 concluded that treatment was ineffective or potentially harmful. Prior controlled clinical trials with CQ and HCQ for non-SARS-CoV2 viral infections do not support these agents' use for the SARS-CoV2 outbreak.


Subject(s)
Chikungunya Fever/drug therapy , Chloroquine/therapeutic use , HIV Infections/drug therapy , Hepatitis C, Chronic/drug therapy , Hydroxychloroquine/therapeutic use , Infectious Mononucleosis/drug therapy , Severe Dengue/drug therapy , Warts/drug therapy , Alphapapillomavirus/drug effects , Alphapapillomavirus/immunology , Alphapapillomavirus/pathogenicity , Antiviral Agents/therapeutic use , COVID-19/virology , Chikungunya Fever/immunology , Chikungunya Fever/pathology , Chikungunya Fever/virology , Chikungunya virus/drug effects , Chikungunya virus/immunology , Chikungunya virus/pathogenicity , Dengue Virus/drug effects , Dengue Virus/immunology , Dengue Virus/pathogenicity , HIV/drug effects , HIV/immunology , HIV/pathogenicity , HIV Infections/immunology , HIV Infections/pathology , HIV Infections/virology , Hepacivirus/drug effects , Hepacivirus/immunology , Hepacivirus/pathogenicity , Hepatitis C, Chronic/immunology , Hepatitis C, Chronic/pathology , Hepatitis C, Chronic/virology , Herpesvirus 4, Human/drug effects , Herpesvirus 4, Human/immunology , Herpesvirus 4, Human/pathogenicity , Humans , Infectious Mononucleosis/immunology , Infectious Mononucleosis/pathology , Infectious Mononucleosis/virology , SARS-CoV-2/immunology , SARS-CoV-2/pathogenicity , Severe Dengue/immunology , Severe Dengue/pathology , Severe Dengue/virology , Treatment Outcome , Warts/immunology , Warts/pathology , Warts/virology , COVID-19 Drug Treatment
10.
J Infect Dis ; 224(12): 2073-2084, 2021 12 15.
Article in English | MEDLINE | ID: mdl-34009385

ABSTRACT

BACKGROUND: Staphylococcus aureus (SA) bacterial pneumonia is a common cause of sepsis in intensive care units. Immune checkpoint inhibitors (CPIs) that target programmed cell death protein 1 (PD-1) and its ligand (PD-L1) have been proposed for the treatment of sepsis. However, in our systematic review of sepsis preclinical models, none of the models examined CPIs in pneumonia. METHODS: Mice were inoculated intratracheally with vehicle control, low dose (LD)- or high dose (HD)-SA. Immune cell recruitment and checkpoint molecule expression were examined at 4, 24, and 48 hours after infection. Infected animals, treated with control or anti-PD-L1 antibodies, were assessed for survival, bacterial burden, lung immunophenotypes, and mediator production. RESULTS: LD-SA and HD-SA produced lethality of 15% and 70%, respectively, by 168 hours. At 24 hours, LD-infected animals exhibited increased lung monocyte PD-L1 expression (P = .0002) but lower bacterial counts (P = .0002) compared with HD animals. By 48 hours, either infection induced lung neutrophil and macrophage PD-L1 expression (P < .0001). Anti-PD-L1 treatment at the time of infection and at 24 hours following infection with low to high doses of SA reduced PD-L1 detection but did not affect survival or bacterial clearance. CONCLUSIONS: Anti-PD-L1 therapy did not alter survival in this pneumonia model. Preclinical studies of additional common pathogens and septic foci are needed.


Subject(s)
B7-H1 Antigen/antagonists & inhibitors , Immunotherapy , Pneumonia, Staphylococcal/drug therapy , Sepsis/mortality , Staphylococcal Infections/drug therapy , Staphylococcus aureus/drug effects , Animals , B7-H1 Antigen/immunology , Disease Models, Animal , Mice , Staphylococcal Infections/etiology , Staphylococcus aureus/isolation & purification
11.
Crit Care Med ; 48(9): 1365-1374, 2020 09.
Article in English | MEDLINE | ID: mdl-32706554

ABSTRACT

OBJECTIVES: Checkpoint inhibitors have been proposed for sepsis following reports of increased checkpoint molecule expression in septic patients. To determine whether clinical studies investigating checkpoint molecule expression provide strong evidence supporting trials of checkpoint inhibitors for sepsis. DATA SOURCES: PubMed, EMBASE, Scopus, Web of Science, inception through October 2019. STUDY SELECTION: Studies comparing checkpoint molecule expression in septic patients versus healthy controls or critically ill nonseptic patients or in sepsis nonsurvivors versus survivors. DATA EXTRACTION: Two investigators extracted data and evaluated study quality. DATA SYNTHESIS: Thirty-six studies were retrieved. Across 26 studies, compared with healthy controls, septic patients had significantly (p ≤ 0.05) increased CD4+ lymphocyte programmed death-1 and monocyte programmed death-ligand-1 expression in most studies. Other checkpoint molecule expressions were variable and studied less frequently. Across 11 studies, compared with critically ill nonseptic, septic patients had significantly increased checkpoint molecule expression in three or fewer studies. Septic patients had higher severity of illness scores, comorbidities, and mortality in three studies providing analysis. Across 12 studies, compared with septic survivors, nonsurvivors had significantly increased expression of any checkpoint molecule on any cell type in five or fewer studies. Of all 36 studies, none adjusted for nonseptic covariates reported to increase checkpoint molecule expression. CONCLUSIONS: Although sepsis may increase some checkpoint molecule expression compared with healthy controls, the data are limited and inconsistent. Further, data from the more informative patient comparisons are potentially confounded by severity of illness. These clinical checkpoint molecule expression studies do not yet provide a strong rationale for trials of checkpoint inhibitor therapy for sepsis.


Subject(s)
Critical Illness , Immune Checkpoint Proteins/biosynthesis , Sepsis/physiopathology , B7-H1 Antigen/biosynthesis , CD4-Positive T-Lymphocytes/metabolism , Humans , Immune Checkpoint Inhibitors/therapeutic use , Programmed Cell Death 1 Receptor/biosynthesis , Sepsis/drug therapy , Severity of Illness Index
12.
Am J Respir Crit Care Med ; 197(6): 708-727, 2018 03 15.
Article in English | MEDLINE | ID: mdl-29087211

ABSTRACT

Pseudomonas aeruginosa is a complex gram-negative facultative anaerobe replete with a variety of arsenals to activate, modify, and destroy host defense mechanisms. The microbe is a common cause of nosocomial infections and an antibiotic-resistant priority pathogen. In the lung, P. aeruginosa disrupts upper and lower airway homeostasis by damaging the epithelium and evading innate and adaptive immune responses. The biology of these interactions is essential to understand P. aeruginosa pathogenesis. P. aeruginosa interacts directly with host cells via flagella, pili, lipoproteins, lipopolysaccharides, and the type III secretion system localized in the outer membrane. P. aeruginosa quorum-sensing molecules regulate the release of soluble factors that enhance the spread of infection. These characteristics of P. aeruginosa differentially affect lung epithelial, innate, and adaptive immune cells involved in the production of mediators and the recruitment of additional immune cell subsets. Pathogen interactions with individual host cells and in the context of host acute lung infection are discussed to reveal pathways that may be targeted therapeutically.


Subject(s)
Lung Diseases/immunology , Lung Diseases/physiopathology , Pseudomonas Infections/immunology , Pseudomonas Infections/physiopathology , Pseudomonas aeruginosa/immunology , Cross Infection/immunology , Cross Infection/physiopathology , Cross Infection/therapy , Humans , Lung/immunology , Lung/microbiology , Lung Diseases/therapy , Pseudomonas Infections/therapy
13.
Infect Immun ; 85(7)2017 07.
Article in English | MEDLINE | ID: mdl-28438974

ABSTRACT

Bacillus anthracis edema toxin (ET) consists of protective antigen (PA), necessary for host cell toxin uptake, and edema factor (EF), the toxic moiety which increases host cell cyclic AMP (cAMP). Since vasopressin stimulates renal water and sodium reabsorption via increased tubular cell cAMP levels, we hypothesized the ET would also do so. To test this hypothesis, we employed an isolated perfused rat kidney model. Kidneys were isolated and perfused with modified Krebs-Henseleit buffer. Perfusate and urine samples were obtained at baseline and every 10 min over 150 min following the addition of challenges with or without treatments to the perfusate. In kidneys perfused under constant flow or constant pressure, compared to PA challenge (n = 14 or 15 kidneys, respectively), ET (13 or 15 kidneys, respectively) progressively increased urine cAMP levels, water and sodium reabsorption, and urine osmolality and decreased urine output (P ≤ 0.04, except for sodium reabsorption under constant pressure [P = 0.17]). In ET-challenged kidneys, compared to placebo treatment, adefovir, an EF inhibitor, decreased urine cAMP levels, water and sodium reabsorption, and urine osmolality and increased urine output, while raxibacumab, a PA-directed monoclonal antibody (MAb), decreased urine cAMP levels, free water reabsorption, and urine osmolality and increased urine output (P ≤ 0.03 except for urine output with raxibacumab [P = 0.17]). Upon immunohistochemistry, aquaporin 2 was concentrated along the apical membrane of tubular cells with ET but not PA, and urine aquaporin 2 levels were higher with ET (5.52 ± 1.06 ng/ml versus 1.51 ± 0.44 ng/ml [means ± standard errors of the means {SEM}; P = 0.0001). Edema toxin has renal effects that could contribute to extravascular fluid collection characterizing anthrax infection clinically.


Subject(s)
Antigens, Bacterial/toxicity , Bacterial Toxins/toxicity , Kidney/drug effects , Kidney/metabolism , Sodium/metabolism , Water/metabolism , Animals , Aquaporins/analysis , Cyclic AMP/analysis , Immunohistochemistry , Kidney/pathology , Placebos/administration & dosage , Rats, Sprague-Dawley
15.
Crit Care Med ; 49(9): 1576-1582, 2021 09 01.
Article in English | MEDLINE | ID: mdl-34413272
17.
J Immunol ; 192(4): 1651-1660, 2014 Feb 15.
Article in English | MEDLINE | ID: mdl-24431231

ABSTRACT

Exposure to pathogens in the periphery elicits effector T cell differentiation in local lymph nodes followed by migration of activated T cells to and within the infected site. However, the relationships among pathogen abundance, Ag display on MHC molecules, effector T cell dynamics, and functional responses at the infected sites are incompletely characterized. In this study, we compared CD4(+) T cell effector dynamics and responses during pulmonary mycobacterial infection versus acute influenza infection. Two-photon imaging together with in situ as well as ex vivo analysis of cytokine production revealed that the proportion of migration-arrested, cytokine-producing effector T cells was dramatically higher in the influenza-infected lungs due to substantial differences in Ag abundance in the two infectious states. Despite the marked inflammatory conditions associated with influenza infection, histocytometric analysis showed that cytokine production was focal, with a restriction to areas of significant Ag burden. Optimal effector function is thus constrained by the availability of TCR ligands, pointing to the value of increasing Ag stimulation rather than effector numbers in harnessing CD4(+) T cells for therapeutic purposes in such conditions.


Subject(s)
CD4-Positive T-Lymphocytes/immunology , Cytokines/metabolism , Orthomyxoviridae Infections/immunology , Receptors, Antigen, T-Cell/immunology , Tuberculosis, Pulmonary/immunology , Adoptive Transfer , Animals , Antigen Presentation/immunology , CD4-Positive T-Lymphocytes/metabolism , CD4-Positive T-Lymphocytes/transplantation , Cell Differentiation/immunology , Cell Movement/immunology , Cytokines/biosynthesis , Inflammation/immunology , Interferon-gamma/metabolism , Liver/immunology , Lung/immunology , Lymph Nodes/immunology , Lymphocyte Activation/immunology , Mice , Mice, Inbred C57BL , Mycobacterium bovis/immunology , Mycobacterium tuberculosis/immunology , Orthomyxoviridae/immunology , Tumor Necrosis Factor-alpha/metabolism
18.
Proc Natl Acad Sci U S A ; 110(5): 1821-6, 2013 Jan 29.
Article in English | MEDLINE | ID: mdl-23319636

ABSTRACT

The proportion of CD4 T cells with phenotypic and functional properties of naïve cells out of total CD4 T cells is similar in the lung parenchyma and lymph nodes. On treatment with a sphingosine-1-phosphate agonist, the frequency of these cells falls precipitously, but with a delay of ∼14 h compared with blood CD4 T cells; neither anti-CD62L nor pertussis toxin prevents entry of naïve CD4 T cells into the lung. Based on treatment with anti-CD62L and the use of CCR7(-/-) cells, lung naïve CD4 T cells appear to migrate to the mediastinal lymph nodes along a CD62L-independent, CCR7-dependent pathway. Cells that have entered the node in this manner are competent to respond to antigen. Thus, a portion (approximately one-half) of naïve CD4 T cells appears to enter the mediastinal lymph nodes through a blood-to-lung-to-lymph node route.


Subject(s)
CD4-Positive T-Lymphocytes/immunology , Cell Movement/immunology , Lung/immunology , Lymph Nodes/immunology , Adoptive Transfer , Animals , CD4-Positive T-Lymphocytes/metabolism , CD4-Positive T-Lymphocytes/transplantation , Cell Proliferation , DNA-Binding Proteins/genetics , DNA-Binding Proteins/immunology , DNA-Binding Proteins/metabolism , Female , Flow Cytometry , Green Fluorescent Proteins/genetics , Green Fluorescent Proteins/metabolism , Immunophenotyping , L-Selectin/immunology , L-Selectin/metabolism , Lung/metabolism , Lymph Nodes/metabolism , Mice , Mice, Inbred C57BL , Mice, Knockout , Mice, Transgenic , Microscopy, Confocal , Receptors, CCR7/genetics , Receptors, CCR7/immunology , Receptors, CCR7/metabolism , Signal Transduction/immunology
19.
N Engl J Med ; 366(4): 330-8, 2012 Jan 26.
Article in English | MEDLINE | ID: mdl-22236196

ABSTRACT

BACKGROUND: Mendelian analysis of disorders of immune regulation can provide insight into molecular pathways associated with host defense and immune tolerance. METHODS: We identified three families with a dominantly inherited complex of cold-induced urticaria, antibody deficiency, and susceptibility to infection and autoimmunity. Immunophenotyping methods included flow cytometry, analysis of serum immunoglobulins and autoantibodies, lymphocyte stimulation, and enzymatic assays. Genetic studies included linkage analysis, targeted Sanger sequencing, and next-generation whole-genome sequencing. RESULTS: Cold urticaria occurred in all affected subjects. Other, variable manifestations included atopy, granulomatous rash, autoimmune thyroiditis, the presence of antinuclear antibodies, sinopulmonary infections, and common variable immunodeficiency. Levels of serum IgM and IgA and circulating natural killer cells and class-switched memory B cells were reduced. Linkage analysis showed a 7-Mb candidate interval on chromosome 16q in one family, overlapping by 3.5 Mb a disease-associated haplotype in a smaller family. This interval includes PLCG2, encoding phospholipase Cγ(2) (PLCγ(2)), a signaling molecule expressed in B cells, natural killer cells, and mast cells. Sequencing of complementary DNA revealed heterozygous transcripts lacking exon 19 in two families and lacking exons 20 through 22 in a third family. Genomic sequencing identified three distinct in-frame deletions that cosegregated with disease. These deletions, located within a region encoding an autoinhibitory domain, result in protein products with constitutive phospholipase activity. PLCG2-expressing cells had diminished cellular signaling at 37°C but enhanced signaling at subphysiologic temperatures. CONCLUSIONS: Genomic deletions in PLCG2 cause gain of PLCγ(2) function, leading to signaling abnormalities in multiple leukocyte subsets and a phenotype encompassing both excessive and deficient immune function. (Funded by the National Institutes of Health Intramural Research Programs and others.).


Subject(s)
Autoimmune Diseases/genetics , Cryopyrin-Associated Periodic Syndromes/genetics , Immunologic Deficiency Syndromes/genetics , Phospholipase C gamma/genetics , Sequence Deletion , Cold Temperature/adverse effects , DNA, Complementary/analysis , DNA, Complementary/isolation & purification , Female , Humans , Male , Pedigree , Phenotype , Phospholipase C gamma/metabolism , Polymorphism, Single Nucleotide , Sequence Analysis, DNA
20.
Crit Care Med ; 47(12): 1808-1810, 2019 12.
Article in English | MEDLINE | ID: mdl-31738250
SELECTION OF CITATIONS
SEARCH DETAIL