Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
1.
New Phytol ; 242(3): 1156-1171, 2024 May.
Article in English | MEDLINE | ID: mdl-38513692

ABSTRACT

In Catharanthus roseus, monoterpenoid indole alkaloids (MIAs) are produced through the cooperation of four cell types, with final products accumulating in specialized cells known as idioblasts and laticifers. To explore the relationship between cellular differentiation and cell type-specific MIA metabolism, we analyzed the expression of MIA biosynthesis in germinating seeds. Embryos from immature and mature seeds were observed via stereomicroscopy, fluorescence microscopy, and electron microscopy. Time-series MIA and iridoid quantification, along with transcriptome analysis, were conducted to determine the initiation of MIA biosynthesis. In addition, the localization of MIAs was examined using alkaloid staining and imaging mass spectrometry (IMS). Laticifers were present in embryos before seed maturation. MIA biosynthesis commenced 12 h after germination. MIAs accumulated in laticifers of embryos following seed germination, and MIA metabolism is induced after germination in a tissue-specific manner. These findings suggest that cellular morphological differentiation precedes metabolic differentiation. Considering the well-known toxicity and defense role of MIAs in matured plants, MIAs may be an important defense strategy already in the delicate developmental phase of seed germination, and biosynthesis and accumulation of MIAs may require the tissue and cellular differentiation.


Subject(s)
Catharanthus , Secologanin Tryptamine Alkaloids , Monoterpenes/metabolism , Catharanthus/metabolism , Germination , Seeds/metabolism , Secologanin Tryptamine Alkaloids/metabolism , Cell Differentiation , Plant Proteins/metabolism , Gene Expression Regulation, Plant
2.
Microscopy (Oxf) ; 2024 Mar 07.
Article in English | MEDLINE | ID: mdl-38450734

ABSTRACT

Correlative array tomography, combining light and electron microscopy via serial sections, plays a crucial role in the three-dimensional ultrastructural visualization and molecular distribution analysis in biological structures. To address the challenges of aligning fluorescence and electron microscopy images and aligning serial sections of irregularly shaped biological specimens, we developed a diamond notch knife, a new tool for puncturing holes using a diamond needle. The diamond needle featured a triangular and right-angled tip, enabling the drilling of deep holes upon insertion into the polished block face. This study describes the application of the diamond notch knife in correlative array tomography.

3.
Front Plant Sci ; 15: 1322223, 2024.
Article in English | MEDLINE | ID: mdl-38689848

ABSTRACT

During leaf development, the timing of transition from cell proliferation to expansion is an important factor in determining the final organ size. However, the regulatory system involved in this transition remains less understood. To get an insight into this system, we investigated the compensation phenomenon, in which the cell number decreases while the cell size increases in organs with determinate growth. Compensation is observed in several plant species suggesting coordination between cell proliferation and expansion. In this study, we examined an Arabidopsis mutant of ANGUSTIFOLIA 3 (AN3)/GRF-INTERACTING FACTOR 1, a positive regulator of cell proliferation, which exhibits the compensation. Though the AN3 role has been extensively investigated, the mechanism underlying excess cell expansion in the an3 mutant remains unknown. Focusing on the early stage of leaf development, we performed kinematic, cytological, biochemical, and transcriptome analyses, and found that the cell size had already increased during the proliferation phase, with active cell proliferation in the an3 mutant. Moreover, at this stage, chloroplasts, vacuoles, and xylem cells developed earlier than in the wild-type cells. Transcriptome data showed that photosynthetic activity and secondary cell wall biosynthesis were activated in an3 proliferating cells. These results indicated that precocious cell differentiation occurs in an3 cells. Therefore, we suggest a novel AN3 role in the suppression of cell expansion/differentiation during the cell proliferation phase.

4.
Microscopy (Oxf) ; 2024 Jul 20.
Article in English | MEDLINE | ID: mdl-39030710

ABSTRACT

Sandwich freezing is a method of rapid freezing by sandwiching specimens between two copper disks and has been used for observing exquisite close-to-native ultrastructure of living yeast and bacteria. Recently, this method has been found to be useful for preserving cell images of glutaraldehyde-fixed cultured cells, as well as animal and human tissues. In the present study, this method was applied to observe the fine structure of living Arabidopsis plant tissues and was found to achieve excellent ultrastructural preservation of cells and tissues. This is the first report of applying the sandwich freezing method to observe plant tissues.

5.
Nat Plants ; 10(1): 100-117, 2024 01.
Article in English | MEDLINE | ID: mdl-38172572

ABSTRACT

Properly patterned cell walls specify cellular functions in plants. Differentiating protoxylem and metaxylem vessel cells exhibit thick secondary cell walls in striped and pitted patterns, respectively. Cortical microtubules are arranged in distinct patterns to direct cell wall deposition. The scaffold protein MIDD1 promotes microtubule depletion by interacting with ROP GTPases and KINESIN-13A in metaxylem vessels. Here we show that the phase separation of MIDD1 fine-tunes cell wall spacing in protoxylem vessels in Arabidopsis thaliana. Compared with wild-type, midd1 mutants exhibited narrower gaps and smaller pits in the secondary cell walls of protoxylem and metaxylem vessel cells, respectively. Live imaging of ectopically induced protoxylem vessels revealed that MIDD1 forms condensations along the depolymerizing microtubules, which in turn caused massive catastrophe of microtubules. The MIDD1 condensates exhibited rapid turnover and were susceptible to 1,6-hexanediol. Loss of ROP abolished the condensation of MIDD1 and resulted in narrow cell wall gaps in protoxylem vessels. These results suggest that the microtubule-associated phase separation of MIDD1 facilitates microtubule arrangement to regulate the size of gaps in secondary cell walls. This study reveals a new biological role of phase separation in the fine-tuning of cell wall patterning.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Arabidopsis/metabolism , Phase Separation , Cell Wall/metabolism , Microtubules/metabolism , Xylem/metabolism , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism
6.
Nat Commun ; 15(1): 3812, 2024 May 17.
Article in English | MEDLINE | ID: mdl-38760380

ABSTRACT

The molecular system regulating cellular mechanical properties remains unexplored at single-cell resolution mainly due to a limited ability to combine mechanophenotyping with unbiased transcriptional screening. Here, we describe an electroporation-based lipid-bilayer assay for cell surface tension and transcriptomics (ELASTomics), a method in which oligonucleotide-labelled macromolecules are imported into cells via nanopore electroporation to assess the mechanical state of the cell surface and are enumerated by sequencing. ELASTomics can be readily integrated with existing single-cell sequencing approaches and enables the joint study of cell surface mechanics and underlying transcriptional regulation at an unprecedented resolution. We validate ELASTomics via analysis of cancer cell lines from various malignancies and show that the method can accurately identify cell types and assess cell surface tension. ELASTomics enables exploration of the relationships between cell surface tension, surface proteins, and transcripts along cell lineages differentiating from the haematopoietic progenitor cells of mice. We study the surface mechanics of cellular senescence and demonstrate that RRAD regulates cell surface tension in senescent TIG-1 cells. ELASTomics provides a unique opportunity to profile the mechanical and molecular phenotypes of single cells and can dissect the interplay among these in a range of biological contexts.


Subject(s)
Single-Cell Analysis , Transcriptome , Single-Cell Analysis/methods , Animals , Mice , Humans , Cell Line, Tumor , Phenotype , Gene Expression Profiling/methods , Cellular Senescence/genetics , Surface Tension , Electroporation/methods , Cell Membrane/metabolism
7.
Nat Commun ; 15(1): 7045, 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-39147751

ABSTRACT

Arctic (E22G) mutation in amyloid-ß (Aß enhances Aß40 fibril accumulation in Alzheimer's disease (AD). Unlike sporadic AD, familial AD (FAD) patients with the mutation exhibit more Aß40 in the plaque core. However, structural details of E22G Aß40 fibrils remain elusive, hindering therapeutic progress. Here, we determine a distinctive W-shaped parallel ß-sheet structure through co-analysis by cryo-electron microscopy (cryoEM) and solid-state nuclear magnetic resonance (SSNMR) of in-vitro-prepared E22G Aß40 fibrils. The E22G Aß40 fibrils displays typical amyloid features in cotton-wool plaques in the FAD, such as low thioflavin-T fluorescence and a less compact unbundled morphology. Furthermore, kinetic and MD studies reveal previously unidentified in-vitro evidence that E22G Aß40, rather than Aß42, may trigger Aß misfolding in the FAD, and prompt subsequent misfolding of wild-type (WT) Aß40/Aß42 via cross-seeding. The results provide insight into how the Arctic mutation promotes AD via Aß40 accumulation and cross-propagation.


Subject(s)
Alzheimer Disease , Amyloid beta-Peptides , Cryoelectron Microscopy , Mutation , Peptide Fragments , Amyloid beta-Peptides/metabolism , Amyloid beta-Peptides/chemistry , Amyloid beta-Peptides/genetics , Alzheimer Disease/metabolism , Alzheimer Disease/genetics , Alzheimer Disease/pathology , Humans , Peptide Fragments/metabolism , Peptide Fragments/chemistry , Peptide Fragments/genetics , Peptide Fragments/ultrastructure , Kinetics , Protein Folding , Amyloid/metabolism , Amyloid/chemistry , Molecular Dynamics Simulation
8.
Nat Commun ; 15(1): 1098, 2024 Feb 06.
Article in English | MEDLINE | ID: mdl-38321030

ABSTRACT

In angiosperms, the transition from floral-organ maintenance to abscission determines reproductive success and seed dispersion. For petal abscission, cell-fate decisions specifically at the petal-cell base are more important than organ-level senescence or cell death in petals. However, how this transition is regulated remains unclear. Here, we identify a jasmonic acid (JA)-regulated chromatin-state switch at the base of Arabidopsis petals that directs local cell-fate determination via autophagy. During petal maintenance, co-repressors of JA signaling accumulate at the base of petals to block MYC activity, leading to lower levels of ROS. JA acts as an airborne signaling molecule transmitted from stamens to petals, accumulating primarily in petal bases to trigger chromatin remodeling. This allows MYC transcription factors to promote chromatin accessibility for downstream targets, including NAC DOMAIN-CONTAINING PROTEIN102 (ANAC102). ANAC102 accumulates specifically at the petal base prior to abscission and triggers ROS accumulation and cell death via AUTOPHAGY-RELATED GENEs induction. Developmentally induced autophagy at the petal base causes maturation, vacuolar delivery, and breakdown of autophagosomes for terminal cell differentiation. Dynamic changes in vesicles and cytoplasmic components in the vacuole occur in many plants, suggesting JA-NAC-mediated local cell-fate determination by autophagy may be conserved in angiosperms.


Subject(s)
Arabidopsis , Cyclopentanes , Oxylipins , Arabidopsis/genetics , Flowers/genetics , Reactive Oxygen Species/metabolism , Autophagy , Chromatin/metabolism , Gene Expression Regulation, Plant
9.
ISME J ; 18(1)2024 Jan 08.
Article in English | MEDLINE | ID: mdl-38365227

ABSTRACT

Tailocins are headless phage tail structures that mediate interbacterial antagonism. Although the prototypical tailocins, R- and F-pyocins, in Pseudomonas aeruginosa, and other predominantly R-type tailocins have been studied, their presence in Alphaproteobacteria remains unexplored. Here, we report the first alphaproteobacterial F-type tailocin, named rhizoviticin, as a determinant of the biocontrol activity of Allorhizobium vitis VAR03-1 against crown gall. Rhizoviticin is encoded by a chimeric prophage genome, one providing transcriptional regulators and the other contributing to tail formation and cell lysis, but lacking head formation genes. The rhizoviticin genome retains a nearly intact early phage region containing an integrase remnant and replication-related genes critical for downstream gene transcription, suggesting an ongoing transition of this locus from a prophage to a tailocin-coding region. Rhizoviticin is responsible for the most antagonistic activity in VAR03-1 culture supernatant against pathogenic A. vitis strain, and rhizoviticin deficiency resulted in a significant reduction in the antitumorigenic activity in planta. We identified the rhizoviticin-coding locus in eight additional A. vitis strains from diverse geographical locations, highlighting a unique survival strategy of certain Rhizobiales bacteria in the rhizosphere. These findings advance our understanding of the evolutionary dynamics of tailocins and provide a scientific foundation for employing rhizoviticin-producing strains in plant disease control.


Subject(s)
Bacteriophages , Vitis , Plant Tumors/microbiology , Plant Diseases/prevention & control , Plant Diseases/microbiology , Pseudomonas aeruginosa , Bacteriophages/genetics , Vitis/microbiology
10.
Commun Biol ; 7(1): 102, 2024 01 24.
Article in English | MEDLINE | ID: mdl-38267515

ABSTRACT

Serine metabolism is involved in various biological processes. Here we investigate primary functions of the phosphorylated pathway of serine biosynthesis in a non-vascular plant Marchantia polymorpha by analyzing knockout mutants of MpPGDH encoding 3-phosphoglycerate dehydrogenase in this pathway. Growth phenotypes indicate that serine from the phosphorylated pathway in the dark is crucial for thallus growth. Sperm development requires serine from the phosphorylated pathway, while egg formation does not. Functional MpPGDH in the maternal genome is necessary for embryo and sporophyte development. Under high CO2 where the glycolate pathway of serine biosynthesis is inhibited, suppressed thallus growth of the mutants is not fully recovered by exogenously-supplemented serine, suggesting the importance of serine homeostasis involving the phosphorylated and glycolate pathways. Metabolomic phenotypes indicate that the phosphorylated pathway mainly influences the tricarboxylic acid cycle, the amino acid and nucleotide metabolism, and lipid metabolism. These results indicate the importance of the phosphorylated pathway of serine biosynthesis in the dark, in the development of sperm, embryo, and sporophyte, and metabolism in M. polymorpha.


Subject(s)
Marchantia , Serine , Marchantia/genetics , Seeds , Spermatozoa , Glycolates
SELECTION OF CITATIONS
SEARCH DETAIL