Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters

Database
Language
Journal subject
Affiliation country
Publication year range
1.
Methods Mol Biol ; 2265: 475-486, 2021.
Article in English | MEDLINE | ID: mdl-33704735

ABSTRACT

MicroRNAs (miRs) are small RNA molecules (18-22 nucleotides) that regulate the transcriptome at a post-transcriptional level by affecting the expression of specific genes. This regulatory mechanism is critical to maintain cell homeostasis and specific functions. Aberrant expression of miRs have been associated with pathobiological processes including cancer. There are few technologies available that are able to profile whole-genome miR expression using minimal amounts of blood samples and without the need for time-consuming extraction steps. Here, we describe the HTG EdgeSeq miR Whole-Transcriptome Assay (WTA) in serum and plasma samples. To identify specific cell-free miR (cfmiR) patterns we have first focused on the analysis of normal donor samples and have then compared these to patients with cutaneous melanoma. The identification of specific cfmiR for melanoma patients will allow for better patient surveillance during targeted and/or checkpoint inhibitor immunotherapy (CII) treatment.


Subject(s)
Circulating MicroRNA/blood , Gene Expression Profiling , Melanoma/blood , RNA, Neoplasm/blood , Skin Neoplasms/blood , Transcriptome , Humans , Melanoma, Cutaneous Malignant
2.
Cancers (Basel) ; 12(11)2020 Nov 13.
Article in English | MEDLINE | ID: mdl-33202891

ABSTRACT

Serum lactate dehydrogenase (LDH) is a standard prognostic biomarker for stage IV melanoma patients. Often, LDH levels do not provide real-time information about the metastatic melanoma patients' disease status and treatment response. Therefore, there is a need to find reliable blood biomarkers for improved monitoring of metastatic melanoma patients who are undergoing checkpoint inhibitor immunotherapy (CII). The objective in this prospective pilot study was to discover circulating cell-free microRNA (cfmiR) signatures in the plasma that could assess melanoma patients' responses during CII. The cfmiRs were evaluated by the next-generation sequencing (NGS) HTG EdgeSeq microRNA (miR) Whole Transcriptome Assay (WTA; 2083 miRs) in 158 plasma samples obtained before and during the course of CII from 47 AJCC stage III/IV melanoma patients' and 73 normal donors' plasma samples. Initially, cfmiR profiles for pre- and post-treatment plasma samples of stage IV non-responder melanoma patients were compared to normal donors' plasma samples. Using machine learning, we identified a 9 cfmiR signature that was associated with stage IV melanoma patients being non-responsive to CII. These cfmiRs were compared in pre- and post-treatment plasma samples from stage IV melanoma patients that showed good responses. Circulating miR-4649-3p, miR-615-3p, and miR-1234-3p demonstrated potential prognostic utility in assessing CII responses. Compared to LDH levels during CII, circulating miR-615-3p levels were consistently more efficient in detecting melanoma patients undergoing CII who developed progressive disease. By combining stage III/IV patients, 92 and 17 differentially expressed cfmiRs were identified in pre-treatment plasma samples from responder and non-responder patients, respectively. In conclusion, this pilot study demonstrated cfmiRs that identified treatment responses and could allow for real-time monitoring of patients receiving CII.

3.
Cancers (Basel) ; 12(6)2020 Jun 25.
Article in English | MEDLINE | ID: mdl-32630542

ABSTRACT

Primary cutaneous melanoma frequently metastasizes to distant organs including the brain. Identification of cell-free microRNAs (cfmiRs) found in the blood can be used as potential body fluid biomarkers for detecting and monitoring patients with melanoma brain metastasis (MBM). In this pilot study, we initially aimed to identify cfmiRs in the blood of MBM patients. Normal donors plasma (healthy, n = 48) and pre-operative MBM patients' plasma samples (n = 36) were compared for differences in >2000 microRNAs (miRs) using a next generation sequencing (NGS) probe-based assay. A 74 cfmiR signature was identified in an initial cohort of MBM plasma samples and then verified in a second cohort of MBM plasma samples (n = 24). Of these, only 58 cfmiRs were also detected in MBM tissues (n = 24). CfmiR signatures were also found in patients who have lung and breast cancer brain metastasis (n = 13) and glioblastomas (n = 36) compared to MBM plasma samples. The 74 cfmiR signature and the latter cfmiR signatures were then compared. We found a 6 cfmiR signature that was commonly upregulated in MBM plasma samples in all of the comparisons, and a 29 cfmiR signature that distinguishes MBM patients from normal donors' samples. In addition, we assessed for cfmiRs in plasma (n = 20) and urine (n = 14) samples collected from metastatic melanoma patients receiving checkpoint inhibitor immunotherapy (CII). Pre- and post-treatment samples showed consistent changes in cfmiRs. Analysis of pre- and post-treatment plasma samples showed 8 differentially expressed (DE) cfmiRs that overlapped with the 35 cfmiR signature found in MBM patients. In paired pre-treatment plasma and urine samples receiving CII 8 cfmiRs overlapped. This study identified specific cfmiRs in MBM plasma samples that may potentially allow for assessment of melanoma patients developing MBM. The cfmiR signatures identified in both blood and urine may have potential utility to assess CII responses after further validation.

SELECTION OF CITATIONS
SEARCH DETAIL