Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 96
Filter
Add more filters

Publication year range
1.
Hum Genet ; 143(2): 151-157, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38349571

ABSTRACT

Experimental models suggest an important role for mitochondrial dysfunction in the pathogenesis of chronic kidney disease (CKD) and acute kidney injury (AKI), but little is known regarding the impact of common mitochondrial genetic variation on kidney health. We sought to evaluate associations of inherited mitochondrial DNA (mtDNA) variation with risk of CKD and AKI in a large population-based cohort. We categorized UK Biobank participants who self-identified as white into eight distinct mtDNA haplotypes, which were previously identified based on their associations with phenotypes associated with mitochondrial DNA copy number, a measure of mitochondrial function. We used linear and logistic regression models to evaluate associations of these mtDNA haplotypes with estimated glomerular filtration rate by serum creatinine and cystatin C (eGFRCr-CysC, N = 362,802), prevalent (N = 416 cases) and incident (N = 405 cases) end-stage kidney disease (ESKD), AKI defined by diagnostic codes (N = 14,170 cases), and urine albumin/creatinine ratio (ACR, N = 114,662). The mean age was 57 ± 8 years and the mean eGFR was 90 ± 14 ml/min/1.73 m2. MtDNA haplotype was significantly associated with eGFR (p = 2.8E-12), but not with prevalent ESKD (p = 5.9E-2), incident ESKD (p = 0.93), AKI (p = 0.26), or urine ACR (p = 0.54). The association of mtDNA haplotype with eGFR remained significant after adjustment for diabetes mellitus and hypertension (p = 1.2E-10). When compared to the reference haplotype, mtDNA haplotypes I (ß = 0.402, standard error (SE) = 0.111; p = 2.7E-4), IV (ß = 0.430, SE = 0.073; p = 4.2E-9), and V (ß = 0.233, SE = 0.050; p = 2.7E-6) were each associated with higher eGFR. Among self-identified white UK Biobank participants, mtDNA haplotype was associated with eGFR, but not with ESKD, AKI or albuminuria.


Subject(s)
Acute Kidney Injury , Kidney Failure, Chronic , Renal Insufficiency, Chronic , Humans , Middle Aged , Aged , Biological Specimen Banks , UK Biobank , Renal Insufficiency, Chronic/epidemiology , Renal Insufficiency, Chronic/genetics , Acute Kidney Injury/epidemiology , Acute Kidney Injury/genetics , Acute Kidney Injury/diagnosis , Glomerular Filtration Rate/genetics , Mitochondria/genetics , DNA, Mitochondrial/genetics , Genetic Variation , Creatinine
2.
Cancer Control ; 30: 10732748231153775, 2023.
Article in English | MEDLINE | ID: mdl-36705261

ABSTRACT

BACKGROUND: Technetium-99m-labeled Tilmanocept, a multivalent mannose, is readily internalized by the CD206 surface receptor on macrophages and dendritic cells which are abundantly present in lymph nodes. We want to examine the drainage patterns of Technetium-99m-labeled Tilmanocept to sentinel lymph nodes (SLNs) in melanoma patients following the 10% rule. METHODS: Multi-center retrospective review of patients with cutaneous melanoma undergoing SLN biopsy using Technetium-99m-labeled Tilmanocept between 2008 and 2014 was conducted. Statistical methods were used for data analyses. RESULTS: Of the 564 patients (mean age of 60.3 and 62% male) with preoperative lymphoscintigraphy showing at least one SLN, several primary tumor sites were included: 27% head/neck, 33% trunk, 21% upper extremity and 19% lower extremity. For the head/neck primary site, 36.5% of patients had multiple draining basins; for the trunk site, 36.4% of patients; for the upper extremity site, 13% of patients; and for the lower extremity, 27.4% of patients. A median of 3 (range 1-18) SLNs were identified and resected. Overall, 78% of patients had >1 SLN identified by Technetium-99m-labeled Tilmanocept. In a multivariate model, patients with >1 SLN were significantly associated with age, Breslow depth, tumor location and higher AJCC tumor stage. A total of 17.7% of patients (100/564) had a positive SLN identified. A total of 145 positive SLNs were identified out of 1,812 SLNs with a positive SLN rate of 8%. Positive SLN status was significantly associated with younger age, greater Breslow depth, mitosis rate, higher AJCC tumor stage, presence of ulceration and angiolymphatic invasion. CONCLUSIONS: Using the 10% rule, Technetium-99m-labeled Tilmanocept detects multiple SLNs in most melanoma patients.


Subject(s)
Melanoma , Sentinel Lymph Node , Skin Neoplasms , Humans , Male , Middle Aged , Female , Sentinel Lymph Node/diagnostic imaging , Sentinel Lymph Node/surgery , Sentinel Lymph Node/pathology , Lymphoscintigraphy/methods , Melanoma/diagnostic imaging , Melanoma/surgery , Melanoma/pathology , Sentinel Lymph Node Biopsy/methods , Radiopharmaceuticals , Technetium Tc 99m Pentetate , Technetium , Lymphatic Metastasis/pathology , Skin Neoplasms/diagnostic imaging , Skin Neoplasms/surgery , Skin Neoplasms/pathology , Lymph Nodes/diagnostic imaging , Lymph Nodes/surgery , Lymph Nodes/pathology
3.
Am J Respir Crit Care Med ; 206(10): 1271-1280, 2022 11 15.
Article in English | MEDLINE | ID: mdl-35822943

ABSTRACT

Rationale: Obstructive sleep apnea (OSA) is a common disorder associated with increased risk for cardiovascular disease, diabetes, and premature mortality. There is strong clinical and epidemiologic evidence supporting the importance of genetic factors influencing OSA but limited data implicating specific genes. Objectives: To search for rare variants contributing to OSA severity. Methods: Leveraging high-depth genomic sequencing data from the NHLBI Trans-Omics for Precision Medicine (TOPMed) program and imputed genotype data from multiple population-based studies, we performed linkage analysis in the CFS (Cleveland Family Study), followed by multistage gene-based association analyses in independent cohorts for apnea-hypopnea index (AHI) in a total of 7,708 individuals of European ancestry. Measurements and Main Results: Linkage analysis in the CFS identified a suggestive linkage peak on chromosome 7q31 (LOD = 2.31). Gene-based analysis identified 21 noncoding rare variants in CAV1 (Caveolin-1) associated with lower AHI after accounting for multiple comparisons (P = 7.4 × 10-8). These noncoding variants together significantly contributed to the linkage evidence (P < 10-3). Follow-up analysis revealed significant associations between these variants and increased CAV1 expression, and increased CAV1 expression in peripheral monocytes was associated with lower AHI (P = 0.024) and higher minimum overnight oxygen saturation (P = 0.007). Conclusions: Rare variants in CAV1, a membrane-scaffolding protein essential in multiple cellular and metabolic functions, are associated with higher CAV1 gene expression and lower OSA severity, suggesting a novel target for modulating OSA severity.


Subject(s)
Sleep Apnea, Obstructive , Humans , Caveolin 1/genetics , Sleep Apnea, Obstructive/genetics , Sequence Analysis, DNA , High-Throughput Nucleotide Sequencing
4.
Am J Hum Genet ; 105(5): 1057-1068, 2019 11 07.
Article in English | MEDLINE | ID: mdl-31668705

ABSTRACT

Average arterial oxyhemoglobin saturation during sleep (AvSpO2S) is a clinically relevant measure of physiological stress associated with sleep-disordered breathing, and this measure predicts incident cardiovascular disease and mortality. Using high-depth whole-genome sequencing data from the National Heart, Lung, and Blood Institute (NHLBI) Trans-Omics for Precision Medicine (TOPMed) project and focusing on genes with linkage evidence on chromosome 8p23,1,2 we observed that six coding and 51 noncoding variants in a gene that encodes the GTPase-activating protein (DLC1) are significantly associated with AvSpO2S and replicated in independent subjects. The combined DLC1 association evidence of discovery and replication cohorts reaches genome-wide significance in European Americans (p = 7.9 × 10-7). A risk score for these variants, built on an independent dataset, explains 0.97% of the AvSpO2S variation and contributes to the linkage evidence. The 51 noncoding variants are enriched in regulatory features in a human lung fibroblast cell line and contribute to DLC1 expression variation. Mendelian randomization analysis using these variants indicates a significant causal effect of DLC1 expression in fibroblasts on AvSpO2S. Multiple sources of information, including genetic variants, gene expression, and methylation, consistently suggest that DLC1 is a gene associated with AvSpO2S.


Subject(s)
Chromosomes, Human, Pair 8/genetics , GTPase-Activating Proteins/genetics , Oxyhemoglobins/genetics , Sleep/genetics , Tumor Suppressor Proteins/genetics , Genetic Linkage/genetics , Genome-Wide Association Study , Humans , Whole Genome Sequencing/methods
5.
PLoS Genet ; 15(4): e1007739, 2019 04.
Article in English | MEDLINE | ID: mdl-30990817

ABSTRACT

Sleep disordered breathing (SDB)-related overnight hypoxemia is associated with cardiometabolic disease and other comorbidities. Understanding the genetic bases for variations in nocturnal hypoxemia may help understand mechanisms influencing oxygenation and SDB-related mortality. We conducted genome-wide association tests across 10 cohorts and 4 populations to identify genetic variants associated with three correlated measures of overnight oxyhemoglobin saturation: average and minimum oxyhemoglobin saturation during sleep and the percent of sleep with oxyhemoglobin saturation under 90%. The discovery sample consisted of 8,326 individuals. Variants with p < 1 × 10(-6) were analyzed in a replication group of 14,410 individuals. We identified 3 significantly associated regions, including 2 regions in multi-ethnic analyses (2q12, 10q22). SNPs in the 2q12 region associated with minimum SpO2 (rs78136548 p = 2.70 × 10(-10)). SNPs at 10q22 were associated with all three traits including average SpO2 (rs72805692 p = 4.58 × 10(-8)). SNPs in both regions were associated in over 20,000 individuals and are supported by prior associations or functional evidence. Four additional significant regions were detected in secondary sex-stratified and combined discovery and replication analyses, including a region overlapping Reelin, a known marker of respiratory complex neurons.These are the first genome-wide significant findings reported for oxyhemoglobin saturation during sleep, a phenotype of high clinical interest. Our replicated associations with HK1 and IL18R1 suggest that variants in inflammatory pathways, such as the biologically-plausible NLRP3 inflammasome, may contribute to nocturnal hypoxemia.


Subject(s)
Hexokinase/genetics , Interleukin-18 Receptor alpha Subunit/genetics , Oxyhemoglobins/metabolism , Sleep/genetics , Adolescent , Adult , Aged , Aged, 80 and over , Cell Adhesion Molecules, Neuronal/genetics , Computational Biology , Extracellular Matrix Proteins/genetics , Female , Gene Regulatory Networks , Genetic Variation , Genome-Wide Association Study , Humans , Hypoxia/blood , Hypoxia/genetics , Male , Middle Aged , NLR Family, Pyrin Domain-Containing 3 Protein/genetics , Nerve Tissue Proteins/genetics , Oxygen/blood , Polymorphism, Single Nucleotide , Quantitative Trait Loci , Reelin Protein , Serine Endopeptidases/genetics , Sleep Apnea Syndromes/blood , Sleep Apnea Syndromes/genetics , Young Adult
6.
Hum Mol Genet ; 28(4): 675-687, 2019 02 15.
Article in English | MEDLINE | ID: mdl-30403821

ABSTRACT

Obstructive sleep apnea (OSA) is a common disorder associated with increased risk of cardiovascular disease and mortality. Its prevalence and severity vary across ancestral background. Although OSA traits are heritable, few genetic associations have been identified. To identify genetic regions associated with OSA and improve statistical power, we applied admixture mapping on three primary OSA traits [the apnea hypopnea index (AHI), overnight average oxyhemoglobin saturation (SaO2) and percentage time SaO2 < 90%] and a secondary trait (respiratory event duration) in a Hispanic/Latino American population study of 11 575 individuals with significant variation in ancestral background. Linear mixed models were performed using previously inferred African, European and Amerindian local genetic ancestry markers. Global African ancestry was associated with a lower AHI, higher SaO2 and shorter event duration. Admixture mapping analysis of the primary OSA traits identified local African ancestry at the chromosomal region 2q37 as genome-wide significantly associated with AHI (P < 5.7 × 10-5), and European and Amerindian ancestries at 18q21 suggestively associated with both AHI and percentage time SaO2 < 90% (P < 10-3). Follow-up joint ancestry-SNP association analyses identified novel variants in ferrochelatase (FECH), significantly associated with AHI and percentage time SaO2 < 90% after adjusting for multiple tests (P < 8 × 10-6). These signals contributed to the admixture mapping associations and were replicated in independent cohorts. In this first admixture mapping study of OSA, novel associations with variants in the iron/heme metabolism pathway suggest a role for iron in influencing respiratory traits underlying OSA.


Subject(s)
Ferrochelatase/genetics , Genome-Wide Association Study , Sleep Apnea, Obstructive/genetics , Aged , Chromosome Mapping , Female , Genotype , Hispanic or Latino/genetics , Humans , Male , Middle Aged , Polymorphism, Single Nucleotide/genetics , Polysomnography , Sleep Apnea, Obstructive/diagnostic imaging , Sleep Apnea, Obstructive/physiopathology , White People/genetics
7.
Nature ; 526(7571): 112-7, 2015 Oct 01.
Article in English | MEDLINE | ID: mdl-26367794

ABSTRACT

The extent to which low-frequency (minor allele frequency (MAF) between 1-5%) and rare (MAF ≤ 1%) variants contribute to complex traits and disease in the general population is mainly unknown. Bone mineral density (BMD) is highly heritable, a major predictor of osteoporotic fractures, and has been previously associated with common genetic variants, as well as rare, population-specific, coding variants. Here we identify novel non-coding genetic variants with large effects on BMD (ntotal = 53,236) and fracture (ntotal = 508,253) in individuals of European ancestry from the general population. Associations for BMD were derived from whole-genome sequencing (n = 2,882 from UK10K (ref. 10); a population-based genome sequencing consortium), whole-exome sequencing (n = 3,549), deep imputation of genotyped samples using a combined UK10K/1000 Genomes reference panel (n = 26,534), and de novo replication genotyping (n = 20,271). We identified a low-frequency non-coding variant near a novel locus, EN1, with an effect size fourfold larger than the mean of previously reported common variants for lumbar spine BMD (rs11692564(T), MAF = 1.6%, replication effect size = +0.20 s.d., Pmeta = 2 × 10(-14)), which was also associated with a decreased risk of fracture (odds ratio = 0.85; P = 2 × 10(-11); ncases = 98,742 and ncontrols = 409,511). Using an En1(cre/flox) mouse model, we observed that conditional loss of En1 results in low bone mass, probably as a consequence of high bone turnover. We also identified a novel low-frequency non-coding variant with large effects on BMD near WNT16 (rs148771817(T), MAF = 1.2%, replication effect size = +0.41 s.d., Pmeta = 1 × 10(-11)). In general, there was an excess of association signals arising from deleterious coding and conserved non-coding variants. These findings provide evidence that low-frequency non-coding variants have large effects on BMD and fracture, thereby providing rationale for whole-genome sequencing and improved imputation reference panels to study the genetic architecture of complex traits and disease in the general population.


Subject(s)
Bone Density/genetics , Fractures, Bone/genetics , Genome, Human/genetics , Homeodomain Proteins/genetics , Animals , Bone and Bones/metabolism , Disease Models, Animal , Europe/ethnology , Exome/genetics , Female , Gene Frequency/genetics , Genetic Predisposition to Disease/genetics , Genetic Variation/genetics , Genomics , Genotype , Humans , Mice , Sequence Analysis, DNA , White People/genetics , Wnt Proteins/genetics
8.
Br J Cancer ; 122(5): 648-657, 2020 03.
Article in English | MEDLINE | ID: mdl-31857724

ABSTRACT

BACKGROUND: Patient-derived xenograft (PDX) mouse tumour models can predict response to therapy in patients. Predictions made from PDX cultures (PDXC) would allow for more rapid and comprehensive evaluation of potential treatment options for patients, including drug combinations. METHODS: We developed a PDX library of BRAF-mutant metastatic melanoma, and a high-throughput drug-screening (HTDS) platform utilising clinically relevant drug exposures. We then evaluated 34 antitumor agents across eight melanoma PDXCs, compared drug response to BRAF and MEK inhibitors alone or in combination with PDXC and the corresponding PDX, and investigated novel drug combinations targeting BRAF inhibitor-resistant melanoma. RESULTS: The concordance of cancer-driving mutations across patient, matched PDX and subsequent PDX generations increases as variant allele frequency (VAF) increases. There was a high correlation in the magnitude of response to BRAF and MEK inhibitors between PDXCs and corresponding PDXs. PDXCs and corresponding PDXs from metastatic melanoma patients that progressed on standard-of-care therapy demonstrated similar resistance patterns to BRAF and MEK inhibitor therapy. Importantly, HTDS identified novel drug combinations to target BRAF-resistant melanoma. CONCLUSIONS: The biological consistency observed between PDXCs and PDXs suggests that PDXCs may allow for a rapid and comprehensive identification of treatments for aggressive cancers, including combination therapies.


Subject(s)
Antineoplastic Combined Chemotherapy Protocols/pharmacology , Melanoma/drug therapy , Animals , Drug Screening Assays, Antitumor , Female , Humans , MAP Kinase Kinase Kinases/antagonists & inhibitors , Melanoma/enzymology , Melanoma/genetics , Melanoma/pathology , Mice , Mutation , Protein Kinase Inhibitors/administration & dosage , Protein Kinase Inhibitors/pharmacology , Proto-Oncogene Proteins B-raf/antagonists & inhibitors , Proto-Oncogene Proteins B-raf/genetics , Random Allocation , Xenograft Model Antitumor Assays
9.
Ann Intern Med ; 170(10): 673-681, 2019 05 21.
Article in English | MEDLINE | ID: mdl-31035288

ABSTRACT

Background: Poor olfaction is common among older adults and has been linked to higher mortality. However, most studies have had a relatively short follow-up and have not explored potential explanations. Objective: To assess poor olfaction in relation to mortality in older adults and to investigate potential explanations. Design: Community-based prospective cohort study. Setting: 2 U.S. communities. Participants: 2289 adults aged 71 to 82 years at baseline (37.7% black persons and 51.9% women). Measurements: Brief Smell Identification Test in 1999 or 2000 (baseline) and all-cause and cause-specific mortality at 3, 5, 10, and 13 years after baseline. Results: During follow-up, 1211 participants died by year 13. Compared with participants with good olfaction, those with poor olfaction had a 46% higher cumulative risk for death at year 10 (risk ratio, 1.46 [95% CI, 1.27 to 1.67]) and a 30% higher risk at year 13 (risk ratio, 1.30 [CI, 1.18 to 1.42]). Similar associations were found in men and women and in white and black persons. However, the association was evident among participants who reported excellent to good health at baseline (for example, 10-year mortality risk ratio, 1.62 [CI, 1.37 to 1.90]) but not among those who reported fair to poor health (10-year mortality risk ratio, 1.06 [CI, 0.82 to 1.37]). In analyses of cause-specific mortality, poor olfaction was associated with higher mortality from neurodegenerative and cardiovascular diseases. Mediation analyses showed that neurodegenerative diseases explained 22% and weight loss explained 6% of the higher 10-year mortality among participants with poor olfaction. Limitation: No data were collected on change in olfaction and its relationship to mortality. Conclusion: Poor olfaction is associated with higher long-term mortality among older adults, particularly those with excellent to good health at baseline. Neurodegenerative diseases and weight loss explain only part of the increased mortality. Primary Funding Source: National Institutes of Health and Michigan State University.


Subject(s)
Independent Living , Olfaction Disorders/mortality , Aged , Cardiovascular Diseases/mortality , Cause of Death , Female , Humans , Male , Neurodegenerative Diseases/mortality , Pennsylvania/epidemiology , Prospective Studies , Risk Factors , Tennessee/epidemiology
11.
Am J Respir Cell Mol Biol ; 58(3): 391-401, 2018 03.
Article in English | MEDLINE | ID: mdl-29077507

ABSTRACT

Obstructive sleep apnea (OSA) is a common heritable disorder displaying marked sexual dimorphism in disease prevalence and progression. Previous genetic association studies have identified a few genetic loci associated with OSA and related quantitative traits, but they have only focused on single ethnic groups, and a large proportion of the heritability remains unexplained. The apnea-hypopnea index (AHI) is a commonly used quantitative measure characterizing OSA severity. Because OSA differs by sex, and the pathophysiology of obstructive events differ in rapid eye movement (REM) and non-REM (NREM) sleep, we hypothesized that additional genetic association signals would be identified by analyzing the NREM/REM-specific AHI and by conducting sex-specific analyses in multiethnic samples. We performed genome-wide association tests for up to 19,733 participants of African, Asian, European, and Hispanic/Latino American ancestry in 7 studies. We identified rs12936587 on chromosome 17 as a possible quantitative trait locus for NREM AHI in men (N = 6,737; P = 1.7 × 10-8) but not in women (P = 0.77). The association with NREM AHI was replicated in a physiological research study (N = 67; P = 0.047). This locus overlapping the RAI1 gene and encompassing genes PEMT1, SREBF1, and RASD1 was previously reported to be associated with coronary artery disease, lipid metabolism, and implicated in Potocki-Lupski syndrome and Smith-Magenis syndrome, which are characterized by abnormal sleep phenotypes. We also identified gene-by-sex interactions in suggestive association regions, suggesting that genetic variants for AHI appear to vary by sex, consistent with the clinical observations of strong sexual dimorphism.


Subject(s)
Genome-Wide Association Study , Quantitative Trait Loci/genetics , Sleep Apnea, Obstructive/genetics , Sleep, REM/physiology , Transcription Factors/genetics , Adult , Aged , Female , Humans , Male , Middle Aged , Phosphatidylethanolamine N-Methyltransferase/genetics , Sex Characteristics , Sterol Regulatory Element Binding Protein 1/genetics , Trans-Activators , ras Proteins/genetics
12.
Hum Mol Genet ; 25(1): 167-79, 2016 Jan 01.
Article in English | MEDLINE | ID: mdl-26464489

ABSTRACT

Sleep duration is implicated in the etiologies of chronic diseases and premature mortality. However, the genetic basis for sleep duration is poorly defined. We sought to identify novel genetic components influencing sleep duration in a multi-ethnic sample. Meta-analyses were conducted of genetic associations with self-reported, habitual sleep duration from seven Candidate Gene Association Resource (CARe) cohorts of over 25 000 individuals of African, Asian, European and Hispanic American ancestry. All individuals were genotyped for ∼50 000 SNPs from 2000 candidate heart, lung, blood and sleep genes. African-Americans had additional genome-wide genotypes. Four cohorts provided replication. A SNP (rs17601612) in the dopamine D2 receptor gene (DRD2) was significantly associated with sleep duration (P = 9.8 × 10(-7)). Conditional analysis identified a second DRD2 signal with opposite effects on sleep duration. In exploratory analysis, suggestive association was observed for rs17601612 with polysomnographically determined sleep latency (P = 0.002). The lead DRD2 signal was recently identified in a schizophrenia GWAS, and a genetic risk score of 11 additional schizophrenia GWAS loci genotyped on the IBC array was also associated with longer sleep duration (P = 0.03). These findings support a role for DRD2 in influencing sleep duration. Our work motivates future pharmocogenetics research on alerting agents such as caffeine and modafinil that interact with the dopaminergic pathway and further investigation of genetic overlap between sleep and neuro-psychiatric traits.


Subject(s)
Receptors, Dopamine D2/genetics , Sleep/genetics , Cohort Studies , Ethnicity , Humans , Polymorphism, Single Nucleotide , Polysomnography , Time Factors
13.
Int J Geriatr Psychiatry ; 33(10): 1319-1326, 2018 10.
Article in English | MEDLINE | ID: mdl-29984425

ABSTRACT

OBJECTIVES: Mitochondrial DNA (mtDNA) heteroplasmy is a mixture of normal and mutated mtDNA molecules in a cell. High levels of heteroplasmy at several mtDNA sites in complex I lead to inherited neurological neurologic diseases and brain magnetic resonance imaging (MRI) abnormalities. Here, we test the hypothesis that mtDNA heteroplasmy at these complex I sites is associated with depressive symptoms in the elderly. METHODS: We examined platelet mtDNA heteroplasmy for associations with depressive symptoms among 137 participants over age 70 from the community-based Health, Aging and Body Composition Study. Depressive symptoms were assessed using the 10-point version of the Center for Epidemiologic Studies Depression Scale (CES-D 10). Complete mtDNA sequencing was performed and heteroplasmy derived for 5 mtDNA sites associated with neurologic mitochondrial diseases and tested for associations with depressive symptoms. RESULTS: Of 5 candidate complex I mtDNA mutations examined for effects on depressive symptoms, increased heteroplasmy at m.13514A>G, ND5, was significantly associated with higher CES-D score (P = .01). A statistically significant interaction between m.13514A > G heteroplasmy and sex was detected (P = .04); in sex-stratified analyses, the impact of m.13514A>G heteroplasmy was stronger in male (P = .003) than in female (P = .98) participants. Men in highest tertile of mtDNA heteroplasmy exhibited significantly higher (P = .0001) mean ± SE CES-D 10 scores, 5.37 ± 0.58, when compared with those in the middle, 2.13 ± 0.52, and lowest tertiles, 2.47 ± 0.58. No associations between the 4 other candidate sites and depressive symptoms were observed. CONCLUSIONS: Increased mtDNA heteroplasmy at m.13514A>G is associated with depressive symptoms in older men. Heteroplasmy may represent a novel biological risk factor for depression.


Subject(s)
DNA, Mitochondrial/genetics , Depressive Disorder/genetics , Aged , Aged, 80 and over , Brain/pathology , Female , Humans , Magnetic Resonance Imaging , Male , Regression Analysis , Risk Factors , Sequence Analysis, DNA
14.
Am J Respir Crit Care Med ; 194(7): 886-897, 2016 Oct 01.
Article in English | MEDLINE | ID: mdl-26977737

ABSTRACT

RATIONALE: Obstructive sleep apnea is a common disorder associated with increased risk for cardiovascular disease, diabetes, and premature mortality. Although there is strong clinical and epidemiologic evidence supporting the importance of genetic factors in influencing obstructive sleep apnea, its genetic basis is still largely unknown. Prior genetic studies focused on traits defined using the apnea-hypopnea index, which contains limited information on potentially important genetically determined physiologic factors, such as propensity for hypoxemia and respiratory arousability. OBJECTIVES: To define novel obstructive sleep apnea genetic risk loci for obstructive sleep apnea, we conducted genome-wide association studies of quantitative traits in Hispanic/Latino Americans from three cohorts. METHODS: Genome-wide data from as many as 12,558 participants in the Hispanic Community Health Study/Study of Latinos, Multi-Ethnic Study of Atherosclerosis, and Starr County Health Studies population-based cohorts were metaanalyzed for association with the apnea-hypopnea index, average oxygen saturation during sleep, and average respiratory event duration. MEASUREMENTS AND MAIN RESULTS: Two novel loci were identified at genome-level significance (rs11691765, GPR83, P = 1.90 × 10-8 for the apnea-hypopnea index, and rs35424364; C6ORF183/CCDC162P, P = 4.88 × 10-8 for respiratory event duration) and seven additional loci were identified with suggestive significance (P < 5 × 10-7). Secondary sex-stratified analyses also identified one significant and several suggestive associations. Multiple loci overlapped genes with biologic plausibility. CONCLUSIONS: These are the first genome-level significant findings reported for obstructive sleep apnea-related physiologic traits in any population. These findings identify novel associations in inflammatory, hypoxia signaling, and sleep pathways.

15.
Ann Rheum Dis ; 74(10): 1861-7, 2015 Oct.
Article in English | MEDLINE | ID: mdl-24928840

ABSTRACT

OBJECTIVES: To identify genetic associations with hip osteoarthritis (HOA), we performed a meta-analysis of genome-wide association studies (GWAS) of HOA. METHODS: The GWAS meta-analysis included approximately 2.5 million imputed HapMap single nucleotide polymorphisms (SNPs). HOA cases and controls defined radiographically and by total hip replacement were selected from the Osteoporotic Fractures in Men (MrOS) Study and the Study of Osteoporotic Fractures (SOF) (654 cases and 4697 controls, combined). Replication of genome-wide significant SNP associations (p ≤5×10(-8)) was examined in five studies (3243 cases and 6891 controls, combined). Functional studies were performed using in vitro models of chondrogenesis and osteogenesis. RESULTS: The A allele of rs788748, located 65 kb upstream of the IGFBP3 gene, was associated with lower HOA odds at the genome-wide significance level in the discovery stage (OR 0.71, p=2×10(-8)). The association replicated in five studies (OR 0.92, p=0.020), but the joint analysis of discovery and replication results was not genome-wide significant (p=1×10(-6)). In separate study populations, the rs788748 A allele was also associated with lower circulating IGFBP3 protein levels (p=4×10(-13)), suggesting that this SNP or a variant in linkage disequilibrium could be an IGFBP3 regulatory variant. Results from functional studies were consistent with association results. Chondrocyte hypertrophy, a deleterious event in OA pathogenesis, was largely prevented upon IGFBP3 knockdown in chondrocytes. Furthermore, IGFBP3 overexpression induced cartilage catabolism and osteogenic differentiation. CONCLUSIONS: Results from GWAS and functional studies provided suggestive links between IGFBP3 and HOA.


Subject(s)
Insulin-Like Growth Factor Binding Protein 3/genetics , Osteoarthritis, Hip/genetics , Aged , Aged, 80 and over , Case-Control Studies , Chondrogenesis/genetics , Chondrogenesis/physiology , Genetic Predisposition to Disease , Genome-Wide Association Study , Humans , Insulin-Like Growth Factor Binding Protein 3/physiology , Male , Middle Aged , Osteoarthritis, Hip/physiopathology , Osteogenesis/genetics , Osteogenesis/physiology , Polymorphism, Single Nucleotide
16.
Am J Geriatr Psychiatry ; 23(10): 1075-87, 2015 Oct.
Article in English | MEDLINE | ID: mdl-25892098

ABSTRACT

BACKGROUND: Depressive symptoms are common in older adults and associated with poor outcomes. Although circadian genes have been implicated in depression, the relationship between circadian genes and depressive symptoms in older adults is unclear. METHODS: A cross-sectional genetic association study of 529 single nucleotide polymorphisms (SNPs) representing 30 candidate circadian genes was performed in two population-based cohorts: the Osteoporotic Fractures in Men Study (MrOS; N=270, age: 76.58±5.61 years) and the Study of Osteoporotic Fractures (SOF) in women (N=1740, 84.05±3.53 years) and a meta-analysis was performed. Depressive symptoms were assessed with the Geriatric Depression Scale categorizing participants as having none-few symptoms (0-2), some depressive symptoms (>2 to <6), or many depressive symptoms (≥6). RESULTS: We found associations meeting multiple testing criteria for significance between the PER3 intronic SNP rs12137927 and decreased odds of reporting "some depressive symptoms" in the SOF sample (odds ratio [OR]: 0.61, 95% confidence interval [CI]: 0.48-0.78, df=1, Wald χ2=-4.04, p=0.000054) and the meta-analysis (OR: 0.61, CI: 0.48-0.78, z=-4.04, p=0.000054) and between the PER3 intronic SNPs rs228644 (OR: 0.74, CI: 0.63-0.86, z=3.82, p=0.00013) and rs228682 (OR: 0.74, CI: 0.86-0.63, z=3.81, p=0.00014) and decreased odds of reporting "some depressive symptoms" in the meta-analysis compared to endorsing none-few depressive symptoms. The RORA intronic SNP rs11632098 was associated with greater odds of reporting "many depressive symptoms" (OR: 2.16, CI: 1.45-3.23, df=1, Wald χ2=3.76, p=0.000168) in the men. In the meta-analysis the association was attenuated and nominally significant (OR: 1.63, CI: 1.24-2.16, z=3.45, p=0.00056). CONCLUSION: PER3 and RORA may play important roles in the development of depressive symptoms in older adults.


Subject(s)
Depression/diagnosis , Depression/genetics , Nuclear Receptor Subfamily 1, Group F, Member 1/genetics , Period Circadian Proteins/genetics , Polymorphism, Single Nucleotide/genetics , Actigraphy , Aged , Aged, 80 and over , Cohort Studies , Cross-Sectional Studies , Female , Humans , Logistic Models , Male , Meta-Analysis as Topic , Odds Ratio , Psychiatric Status Rating Scales , Risk Factors
17.
Hum Brain Mapp ; 35(9): 4556-65, 2014 Sep.
Article in English | MEDLINE | ID: mdl-24616004

ABSTRACT

OBJECTIVE: Identify genetic factors associated with cognitive maintenance in late life and assess their association with gray matter (GM) volume in brain networks affected in aging. METHODS: We conducted a genome-wide association study of ∼2.4 M markers to identify modifiers of cognitive trajectories in Caucasian participants (N = 7,328) from two population-based cohorts of non-demented elderly. Standardized measures of global cognitive function (z-scores) over 10 and 6 years were calculated among participants and mixed model regression was used to determine subject-specific cognitive slopes. "Cognitive maintenance" was defined as a change in slope of ≥ 0 and was compared with all cognitive decliners (slope < 0). In an independent cohort of cognitively normal older Caucasians adults (N = 122), top association findings were then used to create genetic scores to assess whether carrying more cognitive maintenance alleles was associated with greater GM volume in specific brain networks using voxel-based morphometry. RESULTS: The most significant association was on chromosome 11 (rs7109806, P = 7.8 × 10(-8)) near RIC3. RIC3 modulates activity of α7 nicotinic acetylcholine receptors, which have been implicated in synaptic plasticity and beta-amyloid binding. In the neuroimaging cohort, carrying more cognitive maintenance alleles was associated with greater volume in the right executive control network (RECN; PFWE = 0.01). CONCLUSIONS: These findings suggest that there may be genetic loci that promote healthy cognitive aging and that they may do so by conferring robustness to GM in the RECN. Future work is required to validate top candidate genes such as RIC3 for involvement in cognitive maintenance.


Subject(s)
Aging/genetics , Aging/pathology , Brain/pathology , Cognition , Aged , Chromosomes, Human, Pair 11 , Cohort Studies , Female , Genome-Wide Association Study , Gray Matter/pathology , Humans , Magnetic Resonance Imaging , Male , Neural Pathways/pathology , Neuropsychological Tests , White People/genetics
18.
Article in English | MEDLINE | ID: mdl-39007867

ABSTRACT

BACKGROUND: Mitochondrial dysfunction manifests in neurodegenerative diseases and other age-associated disorders. In this study, we examined variation in inherited mitochondrial DNA (mtDNA) sequences in Black and White participants from two large aging studies to identify variants related to cognitive function. METHODS: Participants included self-reported Black and White adults aged ≥ 70 years in the Lifestyle Interventions and Independence for Elders (LIFE; N=1319) and Health Aging and Body Composition (Health ABC; N=7888) studies. Cognitive function was measured by the digit-symbol substitution test (DSST), and the Modified Mini-Mental State Exam (3MSE) at baseline and over follow-up in LIFE (3.6 years) and Health ABC (10 years). We examined joint effects of multiple variants across 16 functional mitochondrial regions with cognitive function using a sequence kernel association test. Based on these results, we prioritized meta-analysis of common variants in Black and White participants using mixed effects models. A Bonferroni adjusted p-value of <0.05 was considered statistically significant. RESULTS: Joint variation in subunits ND1, ND2, and ND5 of Complex I, 12S RNA, and hypervariable region (HVR) were significantly associated with DSST and 3MSE at baseline. In meta-analyses among Black participants, variant m.4216T>C, ND1 was associated with a faster decline in 3MSE, and variant m.462C>T in the HVR was associated with a slower decline in DSST. Variant m.5460G>C, ND2 was associated with slower and m.182C>T in the HVR was associated with faster decline in 3MSE in White participants. CONCLUSION: Among Black and White adults, oxidative phosphorylation Complex I variants were associated with cognitive function.

19.
Aging Cell ; 23(6): e14118, 2024 06.
Article in English | MEDLINE | ID: mdl-38627910

ABSTRACT

Autophagy is essential for proteostasis, energetic balance, and cell defense and is a key pathway in aging. Identifying associations between autophagy gene expression patterns in skeletal muscle and physical performance outcomes would further our knowledge of mechanisms related with proteostasis and healthy aging. Muscle biopsies were obtained from participants in the Study of Muscle, Mobility, and Aging (SOMMA). For 575 participants, RNA was sequenced and expression of 281 genes related to autophagy regulation, mitophagy, and mTOR/upstream pathways was determined. Associations between gene expression and outcomes including mitochondrial respiration in muscle fiber bundles (MAX OXPHOS), physical performance (VO2 peak, 400 m walking speed, and leg power), and thigh muscle volume, were determined using negative binomial regression models. For autophagy, key transcriptional regulators including TFE3 and NFKB-related genes (RELA, RELB, and NFKB1) were negatively associated with outcomes. On the contrary, regulators of oxidative metabolism that also promote overall autophagy, mitophagy, and pexophagy (PPARGC1A, PPARA, and EPAS1) were positively associated with multiple outcomes. In line with this, several mitophagy, fusion, and fission-related genes (NIPSNAP2, DNM1L, and OPA1) were also positively associated with outcomes. For mTOR pathway and related genes, expression of WDR59 and WDR24, both subunits of GATOR2 complex (an indirect inhibitor of mTORC1), and PRKAG3, which is a regulatory subunit of AMPK, were negatively correlated with multiple outcomes. Our study identifies autophagy and selective autophagy such as mitophagy gene expression patterns in human skeletal muscle related to physical performance, muscle volume, and mitochondrial function in older persons which may lead to target identification to preserve mobility and independence.


Subject(s)
Aging , Autophagy , Muscle, Skeletal , Humans , Muscle, Skeletal/metabolism , Autophagy/genetics , Aged , Male , Female , Aging/genetics , Aging/metabolism , Physical Functional Performance , Mitochondria/metabolism , Mitochondria/genetics , Aged, 80 and over
20.
Aging Cell ; 23(6): e14114, 2024 06.
Article in English | MEDLINE | ID: mdl-38831629

ABSTRACT

Gene expression in skeletal muscle of older individuals may reflect compensatory adaptations in response to oxidative damage that preserve tissue integrity and maintain function. Identifying associations between oxidative stress response gene expression patterns and mitochondrial function, physical performance, and muscle mass in older individuals would further our knowledge of mechanisms related to managing molecular damage that may be targeted to preserve physical resilience. To characterize expression patterns of genes responsible for the oxidative stress response, RNA was extracted and sequenced from skeletal muscle biopsies collected from 575 participants (≥70 years old) from the Study of Muscle, Mobility, and Aging. Expression levels of 21 protein-coding RNAs related to the oxidative stress response were analyzed in relation to six phenotypic measures, including maximal mitochondrial respiration from muscle biopsies (Max OXPHOS), physical performance (VO2 peak, 400-m walking speed, and leg strength), and muscle size (thigh muscle volume and whole-body D3Cr muscle mass). The mRNA level of the oxidative stress response genes most consistently associated across outcomes are preferentially expressed within the mitochondria. Higher expression of mRNAs that encode generally mitochondria located proteins SOD2, TRX2, PRX3, PRX5, and GRX2 were associated with higher levels of mitochondrial respiration and VO2 peak. In addition, greater SOD2, PRX3, and GRX2 expression was associated with higher physical performance and muscle size. Identifying specific mechanisms associated with high functioning across multiple performance and physical domains may lead to targeted antioxidant interventions with greater impacts on mobility and independence.


Subject(s)
Aging , Muscle, Skeletal , Oxidative Stress , Humans , Oxidative Stress/genetics , Aged , Aging/genetics , Aging/metabolism , Male , Muscle, Skeletal/metabolism , Female , Physical Functional Performance , Mitochondria/metabolism , Mitochondria/genetics , Mitochondria, Muscle/metabolism , Mitochondria, Muscle/genetics , Aged, 80 and over
SELECTION OF CITATIONS
SEARCH DETAIL