Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 114
Filter
1.
Cell ; 187(14): 3726-3740.e43, 2024 Jul 11.
Article in English | MEDLINE | ID: mdl-38861993

ABSTRACT

Many growth factors and cytokines signal by binding to the extracellular domains of their receptors and driving association and transphosphorylation of the receptor intracellular tyrosine kinase domains, initiating downstream signaling cascades. To enable systematic exploration of how receptor valency and geometry affect signaling outcomes, we designed cyclic homo-oligomers with up to 8 subunits using repeat protein building blocks that can be modularly extended. By incorporating a de novo-designed fibroblast growth factor receptor (FGFR)-binding module into these scaffolds, we generated a series of synthetic signaling ligands that exhibit potent valency- and geometry-dependent Ca2+ release and mitogen-activated protein kinase (MAPK) pathway activation. The high specificity of the designed agonists reveals distinct roles for two FGFR splice variants in driving arterial endothelium and perivascular cell fates during early vascular development. Our designed modular assemblies should be broadly useful for unraveling the complexities of signaling in key developmental transitions and for developing future therapeutic applications.


Subject(s)
Cell Differentiation , Fibroblast Growth Factors , Receptors, Fibroblast Growth Factor , Signal Transduction , Animals , Humans , Receptors, Fibroblast Growth Factor/metabolism , Fibroblast Growth Factors/metabolism , Mice , Ligands , Calcium/metabolism , MAP Kinase Signaling System
2.
Cell ; 186(23): 5015-5027.e12, 2023 11 09.
Article in English | MEDLINE | ID: mdl-37949057

ABSTRACT

Embryonic development is remarkably robust, but temperature stress can degrade its ability to generate animals with invariant anatomy. Phenotypes associated with environmental stress suggest that some cell types are more sensitive to stress than others, but the basis of this sensitivity is unknown. Here, we characterize hundreds of individual zebrafish embryos under temperature stress using whole-animal single-cell RNA sequencing (RNA-seq) to identify cell types and molecular programs driving phenotypic variability. We find that temperature perturbs the normal proportions and gene expression programs of numerous cell types and also introduces asynchrony in developmental timing. The notochord is particularly sensitive to temperature, which we map to a specialized cell type: sheath cells. These cells accumulate misfolded protein at elevated temperature, leading to a cascading structural failure of the notochord and anatomic defects. Our study demonstrates that whole-animal single-cell RNA-seq can identify mechanisms for developmental robustness and pinpoint cell types that constitute key failure points.


Subject(s)
Proteostasis , Zebrafish , Animals , Embryonic Development , Gene Expression Regulation, Developmental , Temperature , Zebrafish/growth & development
3.
Cell ; 176(4): 790-804.e13, 2019 02 07.
Article in English | MEDLINE | ID: mdl-30661759

ABSTRACT

The pancreatic islets of Langerhans regulate glucose homeostasis. The loss of insulin-producing ß cells within islets results in diabetes, and islet transplantation from cadaveric donors can cure the disease. In vitro production of whole islets, not just ß cells, will benefit from a better understanding of endocrine differentiation and islet morphogenesis. We used single-cell mRNA sequencing to obtain a detailed description of pancreatic islet development. Contrary to the prevailing dogma, we find islet morphology and endocrine differentiation to be directly related. As endocrine progenitors differentiate, they migrate in cohesion and form bud-like islet precursors, or "peninsulas" (literally "almost islands"). α cells, the first to develop, constitute the peninsular outer layer, and ß cells form later, beneath them. This spatiotemporal collinearity leads to the typical core-mantle architecture of the mature, spherical islet. Finally, we induce peninsula-like structures in differentiating human embryonic stem cells, laying the ground for the generation of entire islets in vitro.


Subject(s)
Islets of Langerhans/cytology , Islets of Langerhans/embryology , Animals , Cell Differentiation , Cells, Cultured , Human Embryonic Stem Cells/cytology , Humans , Insulin/metabolism , Insulin-Secreting Cells/cytology , Islets of Langerhans/metabolism , Islets of Langerhans Transplantation/methods , Mice , Mice, Inbred C57BL , Mice, SCID , Morphogenesis , Pancreas/cytology
4.
Cell ; 176(1-2): 377-390.e19, 2019 01 10.
Article in English | MEDLINE | ID: mdl-30612741

ABSTRACT

Over one million candidate regulatory elements have been identified across the human genome, but nearly all are unvalidated and their target genes uncertain. Approaches based on human genetics are limited in scope to common variants and in resolution by linkage disequilibrium. We present a multiplex, expression quantitative trait locus (eQTL)-inspired framework for mapping enhancer-gene pairs by introducing random combinations of CRISPR/Cas9-mediated perturbations to each of many cells, followed by single-cell RNA sequencing (RNA-seq). Across two experiments, we used dCas9-KRAB to perturb 5,920 candidate enhancers with no strong a priori hypothesis as to their target gene(s), measuring effects by profiling 254,974 single-cell transcriptomes. We identified 664 (470 high-confidence) cis enhancer-gene pairs, which were enriched for specific transcription factors, non-housekeeping status, and genomic and 3D conformational proximity to their target genes. This framework will facilitate the large-scale mapping of enhancer-gene regulatory interactions, a critical yet largely uncharted component of the cis-regulatory landscape of the human genome.


Subject(s)
Chromosome Mapping/methods , Enhancer Elements, Genetic/genetics , Gene Expression Regulation/genetics , CRISPR-Cas Systems/genetics , Clustered Regularly Interspaced Short Palindromic Repeats/genetics , Gene Expression Profiling , Gene Regulatory Networks/genetics , Genome, Human , Genome-Wide Association Study , Genomics , Humans , Quantitative Trait Loci , Transcription Factors/genetics
5.
Cell ; 174(5): 1309-1324.e18, 2018 08 23.
Article in English | MEDLINE | ID: mdl-30078704

ABSTRACT

We applied a combinatorial indexing assay, sci-ATAC-seq, to profile genome-wide chromatin accessibility in ∼100,000 single cells from 13 adult mouse tissues. We identify 85 distinct patterns of chromatin accessibility, most of which can be assigned to cell types, and ∼400,000 differentially accessible elements. We use these data to link regulatory elements to their target genes, to define the transcription factor grammar specifying each cell type, and to discover in vivo correlates of heterogeneity in accessibility within cell types. We develop a technique for mapping single cell gene expression data to single-cell chromatin accessibility data, facilitating the comparison of atlases. By intersecting mouse chromatin accessibility with human genome-wide association summary statistics, we identify cell-type-specific enrichments of the heritability signal for hundreds of complex traits. These data define the in vivo landscape of the regulatory genome for common mammalian cell types at single-cell resolution.


Subject(s)
Chromatin/chemistry , Single-Cell Analysis/methods , Animals , Cluster Analysis , Epigenesis, Genetic , Epigenomics , Gene Expression Regulation , Genome, Human , Genome-Wide Association Study , Humans , Male , Mammals , Mice , Mice, Inbred C57BL , Transcription Factors
6.
Nat Rev Genet ; 25(9): 623-638, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38951690

ABSTRACT

Single-cell and spatial molecular profiling assays have shown large gains in sensitivity, resolution and throughput. Applying these technologies to specimens from human and model organisms promises to comprehensively catalogue cell types, reveal their lineage origins in development and discern their contributions to disease pathogenesis. Moreover, rapidly dropping costs have made well-controlled perturbation experiments and cohort studies widely accessible, illuminating mechanisms that give rise to phenotypes at the scale of the cell, the tissue and the whole organism. Interpreting the coming flood of single-cell data, much of which will be spatially resolved, will place a tremendous burden on existing computational pipelines. However, statistical concepts, models, tools and algorithms can be repurposed to solve problems now arising in genetic and molecular biology studies of development and disease. Here, I review how the questions that recent technological innovations promise to answer can be addressed by the major classes of statistical tools.


Subject(s)
Single-Cell Analysis , Single-Cell Analysis/methods , Humans , Animals , Algorithms , Computational Biology/methods
7.
Cell ; 162(2): 412-424, 2015 Jul 16.
Article in English | MEDLINE | ID: mdl-26186193

ABSTRACT

Induced pluripotency is a promising avenue for disease modeling and therapy, but the molecular principles underlying this process, particularly in human cells, remain poorly understood due to donor-to-donor variability and intercellular heterogeneity. Here, we constructed and characterized a clonal, inducible human reprogramming system that provides a reliable source of cells at any stage of the process. This system enabled integrative transcriptional and epigenomic analysis across the human reprogramming timeline at high resolution. We observed distinct waves of gene network activation, including the ordered re-activation of broad developmental regulators followed by early embryonic patterning genes and culminating in the emergence of a signature reminiscent of pre-implantation stages. Moreover, complementary functional analyses allowed us to identify and validate novel regulators of the reprogramming process. Altogether, this study sheds light on the molecular underpinnings of induced pluripotency in human cells and provides a robust cell platform for further studies. PAPERCLIP.


Subject(s)
Cellular Reprogramming , Induced Pluripotent Stem Cells/cytology , Chromatin/metabolism , Chromatin Assembly and Disassembly , Epigenesis, Genetic , Gene Expression Profiling , Histone Demethylases/metabolism , Humans , Induced Pluripotent Stem Cells/metabolism
8.
Nature ; 626(8001): 1084-1093, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38355799

ABSTRACT

The house mouse (Mus musculus) is an exceptional model system, combining genetic tractability with close evolutionary affinity to humans1,2. Mouse gestation lasts only 3 weeks, during which the genome orchestrates the astonishing transformation of a single-cell zygote into a free-living pup composed of more than 500 million cells. Here, to establish a global framework for exploring mammalian development, we applied optimized single-cell combinatorial indexing3 to profile the transcriptional states of 12.4 million nuclei from 83 embryos, precisely staged at 2- to 6-hour intervals spanning late gastrulation (embryonic day 8) to birth (postnatal day 0). From these data, we annotate hundreds of cell types and explore the ontogenesis of the posterior embryo during somitogenesis and of kidney, mesenchyme, retina and early neurons. We leverage the temporal resolution and sampling depth of these whole-embryo snapshots, together with published data4-8 from earlier timepoints, to construct a rooted tree of cell-type relationships that spans the entirety of prenatal development, from zygote to birth. Throughout this tree, we systematically nominate genes encoding transcription factors and other proteins as candidate drivers of the in vivo differentiation of hundreds of cell types. Remarkably, the most marked temporal shifts in cell states are observed within one hour of birth and presumably underlie the massive physiological adaptations that must accompany the successful transition of a mammalian fetus to life outside the womb.


Subject(s)
Animals, Newborn , Embryo, Mammalian , Embryonic Development , Gastrula , Single-Cell Analysis , Time-Lapse Imaging , Animals , Female , Mice , Pregnancy , Animals, Newborn/embryology , Animals, Newborn/genetics , Cell Differentiation/genetics , Embryo, Mammalian/cytology , Embryo, Mammalian/embryology , Embryonic Development/genetics , Gastrula/cytology , Gastrula/embryology , Gastrulation/genetics , Kidney/cytology , Kidney/embryology , Mesoderm/cytology , Mesoderm/enzymology , Neurons/cytology , Neurons/metabolism , Retina/cytology , Retina/embryology , Somites/cytology , Somites/embryology , Time Factors , Transcription Factors/genetics , Transcription, Genetic , Organ Specificity/genetics
10.
Nature ; 623(7988): 782-791, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37968389

ABSTRACT

The maturation of single-cell transcriptomic technologies has facilitated the generation of comprehensive cellular atlases from whole embryos1-4. A majority of these data, however, has been collected from wild-type embryos without an appreciation for the latent variation that is present in development. Here we present the 'zebrafish single-cell atlas of perturbed embryos': single-cell transcriptomic data from 1,812 individually resolved developing zebrafish embryos, encompassing 19 timepoints, 23 genetic perturbations and a total of 3.2 million cells. The high degree of replication in our study (eight or more embryos per condition) enables us to estimate the variance in cell type abundance organism-wide and to detect perturbation-dependent deviance in cell type composition relative to wild-type embryos. Our approach is sensitive to rare cell types, resolving developmental trajectories and genetic dependencies in the cranial ganglia neurons, a cell population that comprises less than 1% of the embryo. Additionally, time-series profiling of individual mutants identified a group of brachyury-independent cells with strikingly similar transcriptomes to notochord sheath cells, leading to new hypotheses about early origins of the skull. We anticipate that standardized collection of high-resolution, organism-scale single-cell data from large numbers of individual embryos will enable mapping of the genetic dependencies of zebrafish cell types, while also addressing longstanding challenges in developmental genetics, including the cellular and transcriptional plasticity underlying phenotypic diversity across individuals.


Subject(s)
Embryo, Mammalian , Reverse Genetics , Single-Cell Analysis , Zebrafish , Animals , Embryo, Mammalian/embryology , Embryo, Mammalian/metabolism , Gene Expression Profiling , Gene Expression Regulation, Developmental , Reverse Genetics/methods , Transcriptome/genetics , Zebrafish/embryology , Zebrafish/genetics , Mutation , Single-Cell Analysis/methods , Notochord/cytology , Notochord/embryology
11.
Nature ; 623(7988): 772-781, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37968388

ABSTRACT

Mouse models are a critical tool for studying human diseases, particularly developmental disorders1. However, conventional approaches for phenotyping may fail to detect subtle defects throughout the developing mouse2. Here we set out to establish single-cell RNA sequencing of the whole embryo as a scalable platform for the systematic phenotyping of mouse genetic models. We applied combinatorial indexing-based single-cell RNA sequencing3 to profile 101 embryos of 22 mutant and 4 wild-type genotypes at embryonic day 13.5, altogether profiling more than 1.6 million nuclei. The 22 mutants represent a range of anticipated phenotypic severities, from established multisystem disorders to deletions of individual regulatory regions4,5. We developed and applied several analytical frameworks for detecting differences in composition and/or gene expression across 52 cell types or trajectories. Some mutants exhibit changes in dozens of trajectories whereas others exhibit changes in only a few cell types. We also identify differences between widely used wild-type strains, compare phenotyping of gain- versus loss-of-function mutants and characterize deletions of topological associating domain boundaries. Notably, some changes are shared among mutants, suggesting that developmental pleiotropy might be 'decomposable' through further scaling of this approach. Overall, our findings show how single-cell profiling of whole embryos can enable the systematic molecular and cellular phenotypic characterization of mouse mutants with unprecedented breadth and resolution.


Subject(s)
Developmental Disabilities , Embryo, Mammalian , Mutation , Phenotype , Single-Cell Gene Expression Analysis , Animals , Mice , Cell Nucleus/genetics , Developmental Disabilities/genetics , Developmental Disabilities/pathology , Embryo, Mammalian/metabolism , Embryo, Mammalian/pathology , Gain of Function Mutation , Genotype , Loss of Function Mutation , Models, Genetic , Disease Models, Animal
12.
Cell ; 153(5): 1149-63, 2013 May 23.
Article in English | MEDLINE | ID: mdl-23664763

ABSTRACT

Differentiation of human embryonic stem cells (hESCs) provides a unique opportunity to study the regulatory mechanisms that facilitate cellular transitions in a human context. To that end, we performed comprehensive transcriptional and epigenetic profiling of populations derived through directed differentiation of hESCs representing each of the three embryonic germ layers. Integration of whole-genome bisulfite sequencing, chromatin immunoprecipitation sequencing, and RNA sequencing reveals unique events associated with specification toward each lineage. Lineage-specific dynamic alterations in DNA methylation and H3K4me1 are evident at putative distal regulatory elements that are frequently bound by pluripotency factors in the undifferentiated hESCs. In addition, we identified germ-layer-specific H3K27me3 enrichment at sites exhibiting high DNA methylation in the undifferentiated state. A better understanding of these initial specification events will facilitate identification of deficiencies in current approaches, leading to more faithful differentiation strategies as well as providing insights into the rewiring of human regulatory programs during cellular transitions.


Subject(s)
Embryonic Stem Cells/metabolism , Epigenesis, Genetic , Transcription, Genetic , Acetylation , Cell Differentiation , Chromatin/chemistry , Chromatin/metabolism , DNA Methylation , Enhancer Elements, Genetic , Histones/metabolism , Humans , Methylation
13.
Nat Methods ; 21(6): 983-993, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38724692

ABSTRACT

The inability to scalably and precisely measure the activity of developmental cis-regulatory elements (CREs) in multicellular systems is a bottleneck in genomics. Here we develop a dual RNA cassette that decouples the detection and quantification tasks inherent to multiplex single-cell reporter assays. The resulting measurement of reporter expression is accurate over multiple orders of magnitude, with a precision approaching the limit set by Poisson counting noise. Together with RNA barcode stabilization via circularization, these scalable single-cell quantitative expression reporters provide high-contrast readouts, analogous to classic in situ assays but entirely from sequencing. Screening >200 regions of accessible chromatin in a multicellular in vitro model of early mammalian development, we identify 13 (8 previously uncharacterized) autonomous and cell-type-specific developmental CREs. We further demonstrate that chimeric CRE pairs generate cognate two-cell-type activity profiles and assess gain- and loss-of-function multicellular expression phenotypes from CRE variants with perturbed transcription factor binding sites. Single-cell quantitative expression reporters can be applied in developmental and multicellular systems to quantitatively characterize native, perturbed and synthetic CREs at scale, with high sensitivity and at single-cell resolution.


Subject(s)
Gene Expression Regulation, Developmental , Single-Cell Analysis , Single-Cell Analysis/methods , Animals , Mice , Genes, Reporter , Regulatory Sequences, Nucleic Acid , Humans , Transcription Factors/genetics , Transcription Factors/metabolism , Chromatin/genetics , Chromatin/metabolism , Regulatory Elements, Transcriptional , Gene Expression Profiling/methods
14.
Mol Cell ; 71(5): 858-871.e8, 2018 09 06.
Article in English | MEDLINE | ID: mdl-30078726

ABSTRACT

Linking regulatory DNA elements to their target genes, which may be located hundreds of kilobases away, remains challenging. Here, we introduce Cicero, an algorithm that identifies co-accessible pairs of DNA elements using single-cell chromatin accessibility data and so connects regulatory elements to their putative target genes. We apply Cicero to investigate how dynamically accessible elements orchestrate gene regulation in differentiating myoblasts. Groups of Cicero-linked regulatory elements meet criteria of "chromatin hubs"-they are enriched for physical proximity, interact with a common set of transcription factors, and undergo coordinated changes in histone marks that are predictive of changes in gene expression. Pseudotemporal analysis revealed that most DNA elements remain in chromatin hubs throughout differentiation. A subset of elements bound by MYOD1 in myoblasts exhibit early opening in a PBX1- and MEIS1-dependent manner. Our strategy can be applied to dissect the architecture, sequence determinants, and mechanisms of cis-regulation on a genome-wide scale.


Subject(s)
Chromatin Assembly and Disassembly/genetics , Chromatin/genetics , DNA/genetics , Enhancer Elements, Genetic/genetics , Gene Expression Regulation/genetics , Adolescent , Cell Differentiation/genetics , Female , Genes, Homeobox/genetics , Histones/genetics , Humans , Myoblasts/physiology , Transcription Factors/genetics
15.
Nature ; 566(7745): 496-502, 2019 02.
Article in English | MEDLINE | ID: mdl-30787437

ABSTRACT

Mammalian organogenesis is a remarkable process. Within a short timeframe, the cells of the three germ layers transform into an embryo that includes most of the major internal and external organs. Here we investigate the transcriptional dynamics of mouse organogenesis at single-cell resolution. Using single-cell combinatorial indexing, we profiled the transcriptomes of around 2 million cells derived from 61 embryos staged between 9.5 and 13.5 days of gestation, in a single experiment. The resulting 'mouse organogenesis cell atlas' (MOCA) provides a global view of developmental processes during this critical window. We use Monocle 3 to identify hundreds of cell types and 56 trajectories, many of which are detected only because of the depth of cellular coverage, and collectively define thousands of corresponding marker genes. We explore the dynamics of gene expression within cell types and trajectories over time, including focused analyses of the apical ectodermal ridge, limb mesenchyme and skeletal muscle.


Subject(s)
Embryo, Mammalian/cytology , Embryo, Mammalian/embryology , Gene Expression Regulation, Developmental/genetics , Organogenesis/genetics , Single-Cell Analysis/methods , Transcriptome , Animals , Ectoderm/cytology , Ectoderm/embryology , Ectoderm/metabolism , Embryo, Mammalian/metabolism , Female , Genetic Markers , Male , Mesoderm/cytology , Mesoderm/embryology , Mesoderm/metabolism , Mice , Muscle Development/genetics , Muscle, Skeletal/cytology , Muscle, Skeletal/embryology , Muscle, Skeletal/metabolism , Organ Specificity/genetics , Sequence Analysis, RNA , Time Factors
16.
Mol Syst Biol ; 19(6): e11517, 2023 06 12.
Article in English | MEDLINE | ID: mdl-37154091

ABSTRACT

Recent advances in multiplexed single-cell transcriptomics experiments facilitate the high-throughput study of drug and genetic perturbations. However, an exhaustive exploration of the combinatorial perturbation space is experimentally unfeasible. Therefore, computational methods are needed to predict, interpret, and prioritize perturbations. Here, we present the compositional perturbation autoencoder (CPA), which combines the interpretability of linear models with the flexibility of deep-learning approaches for single-cell response modeling. CPA learns to in silico predict transcriptional perturbation response at the single-cell level for unseen dosages, cell types, time points, and species. Using newly generated single-cell drug combination data, we validate that CPA can predict unseen drug combinations while outperforming baseline models. Additionally, the architecture's modularity enables incorporating the chemical representation of the drugs, allowing the prediction of cellular response to completely unseen drugs. Furthermore, CPA is also applicable to genetic combinatorial screens. We demonstrate this by imputing in silico 5,329 missing combinations (97.6% of all possibilities) in a single-cell Perturb-seq experiment with diverse genetic interactions. We envision CPA will facilitate efficient experimental design and hypothesis generation by enabling in silico response prediction at the single-cell level and thus accelerate therapeutic applications using single-cell technologies.


Subject(s)
Computational Biology , Gene Expression Profiling , High-Throughput Screening Assays , Single-Cell Gene Expression Analysis
17.
Nature ; 555(7697): 538-542, 2018 03 22.
Article in English | MEDLINE | ID: mdl-29539636

ABSTRACT

Understanding how gene regulatory networks control the progressive restriction of cell fates is a long-standing challenge. Recent advances in measuring gene expression in single cells are providing new insights into lineage commitment. However, the regulatory events underlying these changes remain unclear. Here we investigate the dynamics of chromatin regulatory landscapes during embryogenesis at single-cell resolution. Using single-cell combinatorial indexing assay for transposase accessible chromatin with sequencing (sci-ATAC-seq), we profiled chromatin accessibility in over 20,000 single nuclei from fixed Drosophila melanogaster embryos spanning three landmark embryonic stages: 2-4 h after egg laying (predominantly stage 5 blastoderm nuclei), when each embryo comprises around 6,000 multipotent cells; 6-8 h after egg laying (predominantly stage 10-11), to capture a midpoint in embryonic development when major lineages in the mesoderm and ectoderm are specified; and 10-12 h after egg laying (predominantly stage 13), when each of the embryo's more than 20,000 cells are undergoing terminal differentiation. Our results show that there is spatial heterogeneity in the accessibility of the regulatory genome before gastrulation, a feature that aligns with future cell fate, and that nuclei can be temporally ordered along developmental trajectories. During mid-embryogenesis, tissue granularity emerges such that individual cell types can be inferred by their chromatin accessibility while maintaining a signature of their germ layer of origin. Analysis of the data reveals overlapping usage of regulatory elements between cells of the endoderm and non-myogenic mesoderm, suggesting a common developmental program that is reminiscent of the mesendoderm lineage in other species. We identify 30,075 distal regulatory elements that exhibit tissue-specific accessibility. We validated the germ-layer specificity of a subset of these predicted enhancers in transgenic embryos, achieving an accuracy of 90%. Overall, our results demonstrate the power of shotgun single-cell profiling of embryos to resolve dynamic changes in the chromatin landscape during development, and to uncover the cis-regulatory programs of metazoan germ layers and cell types.


Subject(s)
Drosophila melanogaster/cytology , Drosophila melanogaster/embryology , Embryonic Development/genetics , Gene Expression Regulation, Developmental , Single-Cell Analysis , Animals , Cell Differentiation/genetics , Cell Lineage/genetics , Chromatin/genetics , Chromatin/metabolism , Drosophila melanogaster/genetics , Endoderm/cytology , Endoderm/metabolism , Enhancer Elements, Genetic/genetics , Female , Gastrulation/genetics , Genome, Insect/genetics , Male , Mesoderm/cytology , Mesoderm/metabolism , Organ Specificity/genetics , Organisms, Genetically Modified/cytology , Organisms, Genetically Modified/genetics , Reproducibility of Results
18.
BMC Genomics ; 24(1): 737, 2023 Dec 04.
Article in English | MEDLINE | ID: mdl-38049719

ABSTRACT

Single-cell chromatin accessibility has emerged as a powerful means of understanding the epigenetic landscape of diverse tissues and cell types, but profiling cells from many independent specimens is challenging and costly. Here we describe a novel approach, sciPlex-ATAC-seq, which uses unmodified DNA oligos as sample-specific nuclear labels, enabling the concurrent profiling of chromatin accessibility within single nuclei from virtually unlimited specimens or experimental conditions. We first demonstrate our method with a chemical epigenomics screen, in which we identify drug-altered distal regulatory sites predictive of compound- and dose-dependent effects on transcription. We then analyze cell type-specific chromatin changes in PBMCs from multiple donors responding to synthetic and allogeneic immune stimulation. We quantify stimulation-altered immune cell compositions and isolate the unique effects of allogeneic stimulation on chromatin accessibility specific to T-lymphocytes. Finally, we observe that impaired global chromatin decondensation often coincides with chemical inhibition of allogeneic T-cell activation.


Subject(s)
Chromatin , DNA , Chromatin/genetics , DNA/genetics , Chromatin Immunoprecipitation Sequencing , Sequence Analysis, DNA/methods , Epigenomics/methods
19.
Proc Natl Acad Sci U S A ; 117(8): 4375-4384, 2020 02 25.
Article in English | MEDLINE | ID: mdl-32034095

ABSTRACT

The mouse brain contains about 75 million neurons interconnected in a vast array of neural circuits. The identities and functions of individual neuronal components of most circuits are undefined. Here we describe a method, termed "Connect-seq," which combines retrograde viral tracing and single-cell transcriptomics to uncover the molecular identities of upstream neurons in a specific circuit and the signaling molecules they use to communicate. Connect-seq can generate a molecular map that can be superimposed on a neuroanatomical map to permit molecular and genetic interrogation of how the neuronal components of a circuit control its function. Application of this method to hypothalamic neurons controlling physiological responses to fear and stress reveals subsets of upstream neurons that express diverse constellations of signaling molecules and can be distinguished by their anatomical locations.


Subject(s)
Gene Expression Profiling/methods , Neurons/metabolism , Animals , Hypothalamus/chemistry , Hypothalamus/metabolism , Mice , Neurons/chemistry , Proteins/chemistry , Proteins/genetics , Proteins/metabolism , Transcriptome
20.
Am J Physiol Lung Cell Mol Physiol ; 322(3): L438-L448, 2022 03 01.
Article in English | MEDLINE | ID: mdl-35043685

ABSTRACT

Hereditary pulmonary alveolar proteinosis (hPAP) is a rare disorder caused by recessive mutations in GM-CSF receptor subunit α/ß genes (CSF2RA/CSF2RB, respectively) characterized by impaired GM-CSF-dependent surfactant clearance by alveolar macrophages (AMs) resulting in alveolar surfactant accumulation and hypoxemic respiratory failure. Because hPAP is caused by CSF2RA mutations in most patients, we created an animal model of hPAP caused by Csf2ra gene disruption (Csf2ra-/- mice) and evaluated the effects on AMs and lungs. Macrophages from Csf2ra-/- mice were unable to bind and clear GM-CSF, did not exhibit GM-CSF signaling, and had functional defects in phagocytosis, cholesterol clearance, and surfactant clearance. Csf2ra-/- mice developed a time-dependent, progressive lung disease similar to hPAP in children caused by CSF2RA mutations with respect to the clinical, physiological, histopathological, biochemical abnormalities, biomarkers of PAP lung disease, and clinical course. In contrast, Csf2ra+/- mice had functionally normal AMs and no lung disease. Pulmonary macrophage transplantation (PMT) without myeloablation resulted in long-term engraftment, restoration of GM-CSF responsiveness to AMs, and a safe and durable treatment effect that lasted for the duration of the experiment (6 mo). Results demonstrate that homozygous (but not heterozygous) Csf2ra gene ablation caused hPAP identical to hPAP in children with CSF2RA mutations, identified AMs as the cellular site of hPAP pathogenesis in Csf2ra-/- mice, and have implications for preclinical studies supporting the translation of PMT as therapy of hPAP in humans.


Subject(s)
Pulmonary Alveolar Proteinosis , Pulmonary Surfactants , Animals , Disease Models, Animal , Granulocyte-Macrophage Colony-Stimulating Factor/genetics , Humans , Macrophages, Alveolar/metabolism , Mice , Pulmonary Alveolar Proteinosis/genetics , Pulmonary Alveolar Proteinosis/metabolism , Pulmonary Surfactants/metabolism , Receptors, Granulocyte-Macrophage Colony-Stimulating Factor/genetics , Receptors, Granulocyte-Macrophage Colony-Stimulating Factor/metabolism , Surface-Active Agents/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL