Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters

Database
Language
Journal subject
Affiliation country
Publication year range
1.
Am J Hum Genet ; 108(7): 1301-1317, 2021 07 01.
Article in English | MEDLINE | ID: mdl-34038740

ABSTRACT

Human C2orf69 is an evolutionarily conserved gene whose function is unknown. Here, we report eight unrelated families from which 20 children presented with a fatal syndrome consisting of severe autoinflammation and progredient leukoencephalopathy with recurrent seizures; 12 of these subjects, whose DNA was available, segregated homozygous loss-of-function C2orf69 variants. C2ORF69 bears homology to esterase enzymes, and orthologs can be found in most eukaryotic genomes, including that of unicellular phytoplankton. We found that endogenous C2ORF69 (1) is loosely bound to mitochondria, (2) affects mitochondrial membrane potential and oxidative respiration in cultured neurons, and (3) controls the levels of the glycogen branching enzyme 1 (GBE1) consistent with a glycogen-storage-associated mitochondriopathy. We show that CRISPR-Cas9-mediated inactivation of zebrafish C2orf69 results in lethality by 8 months of age due to spontaneous epileptic seizures, which is preceded by persistent brain inflammation. Collectively, our results delineate an autoinflammatory Mendelian disorder of C2orf69 deficiency that disrupts the development/homeostasis of the immune and central nervous systems.


Subject(s)
Encephalitis/genetics , Mitochondrial Diseases/genetics , Animals , Biological Evolution , CRISPR-Cas Systems , Cell Line , Encephalitis/mortality , Female , Genes, Recessive , Glycogen/metabolism , Humans , Inflammation/genetics , Male , Membrane Proteins/genetics , Mitochondrial Diseases/mortality , Pedigree , Seizures/genetics , Seizures/mortality , Zebrafish/genetics
3.
Dev Cell ; 39(4): 411-423, 2016 11 21.
Article in English | MEDLINE | ID: mdl-27840105

ABSTRACT

Connective tissues-skeleton, dermis, pericytes, fascia-are a key cell source for regenerating the patterned skeleton during axolotl appendage regeneration. This complexity has made it difficult to identify the cells that regenerate skeletal tissue. Inability to identify these cells has impeded a mechanistic understanding of blastema formation. By tracing cells during digit tip regeneration using brainbow transgenic axolotls, we show that cells from each connective tissue compartment have distinct spatial and temporal profiles of proliferation, migration, and differentiation. Chondrocytes proliferate but do not migrate into the regenerate. In contrast, pericytes proliferate, then migrate into the blastema and give rise solely to pericytes. Periskeletal cells and fibroblasts contribute the bulk of digit blastema cells and acquire diverse fates according to successive waves of migration that choreograph their proximal-distal and tissue contributions. We further show that platelet-derived growth factor signaling is a potent inducer of fibroblast migration, which is required to form the blastema.


Subject(s)
Ambystoma mexicanum/physiology , Connective Tissue/physiology , Extremities/physiology , Imaging, Three-Dimensional , Regeneration/physiology , Stem Cells/cytology , Animals , Animals, Genetically Modified , Bone and Bones/physiology , Cell Movement , Cell Proliferation , Chondrocytes/cytology , Clone Cells , Dermis/cytology , Fibroblasts/cytology , Models, Biological , Pericytes/cytology , Platelet-Derived Growth Factor/metabolism , Signal Transduction , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL