Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
1.
Mol Cancer ; 17(1): 37, 2018 02 19.
Article in English | MEDLINE | ID: mdl-29455665

ABSTRACT

Regulation of the PI-3 kinase (PI3K)/Akt signalling pathway is essential for maintaining the integrity of fundamental cellular processes, cell growth, survival, death and metabolism, and dysregulation of this pathway is implicated in the development and progression of cancers. Receptor tyrosine kinases (RTKs) are major upstream regulators of PI3K/Akt signalling. The phosphatase and tensin homologue (PTEN), a well characterised tumour suppressor, is a prime antagonist of PI3K and therefore a negative regulator of this pathway. Loss or inactivation of PTEN, which occurs in many tumour types, leads to overactivation of RTK/PI3K/Akt signalling driving tumourigenesis. Cellular PTEN levels are tightly regulated by a number of transcriptional, post-transcriptional and post-translational regulatory mechanisms. Of particular interest, transcription of the PTEN pseudogene, PTENP1, produces sense and antisense transcripts that exhibit post-transcriptional and transcriptional modulation of PTEN expression respectively. These additional levels of regulatory complexity governing PTEN expression add to the overall intricacies of the regulation of RTK/PI-3 K/Akt signalling. This review will discuss the regulation of oncogenic PI3K signalling by PTEN (the regulator) with a focus on the modulatory effects of the sense and antisense transcripts of PTENP1 on PTEN expression, and will further explore the potential for new therapeutic opportunities in cancer treatment.


Subject(s)
Neoplasms/metabolism , PTEN Phosphohydrolase/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Animals , Antineoplastic Agents/therapeutic use , Humans , MicroRNAs/genetics , Neoplasms/drug therapy , PTEN Phosphohydrolase/genetics , Protein-Tyrosine Kinases/genetics , Protein-Tyrosine Kinases/metabolism , Signal Transduction/drug effects , Signal Transduction/genetics
2.
Cancers (Basel) ; 15(20)2023 Oct 12.
Article in English | MEDLINE | ID: mdl-37894321

ABSTRACT

The phosphatase and tensin homolog deleted on chromosome 10 (PTEN) is a well characterised tumour suppressor, playing a critical role in the maintenance of fundamental cellular processes including cell proliferation, migration, metabolism, and survival. Subtle decreases in cellular levels of PTEN result in the development and progression of cancer, hence there is tight regulation of the expression, activity, and cellular half-life of PTEN at the transcriptional, post-transcriptional, and post-translational levels. PTENP1, the processed pseudogene of PTEN, is an important transcriptional and post-transcriptional regulator of PTEN. PTENP1 expression produces sense and antisense transcripts modulating PTEN expression, in conjunction with miRNAs. Due to the high sequence similarity between PTEN and the PTENP1 sense transcript, the transcripts possess common miRNA binding sites with the potential for PTENP1 to compete for the binding, or 'sponging', of miRNAs that would otherwise target the PTEN transcript. PTENP1 therefore acts as a competitive endogenous RNA (ceRNA), competing with PTEN for the binding of specific miRNAs to alter the abundance of PTEN. Transcription from the antisense strand produces two functionally independent isoforms (PTENP1-AS-α and PTENP1-AS-ß), which can regulate PTEN transcription. In this review, we provide an overview of the post-transcriptional regulation of PTEN through interaction with its pseudogene, the cellular miRNA milieu and operation of the ceRNA network. Furthermore, its importance in maintaining cellular integrity and how disruption of this PTEN-miRNA-PTENP1 axis may lead to cancer but also provide novel therapeutic opportunities, is discussed. Precision targeting of PTENP1-miRNA mediated regulation of PTEN may present as a viable alternative therapy.

3.
Methods Mol Biol ; 2324: 165-185, 2021.
Article in English | MEDLINE | ID: mdl-34165715

ABSTRACT

PTENP1 is a processed pseudogene of the tumour suppressor phosphatase and tensin homolog deleted on chromosome 10 (PTEN). It functions posttranscriptionally to regulate PTEN by acting as a sponge for microRNAs that target PTEN. PTENP1 therefore functions as a competitive endogenous RNA (ceRNA), competing with PTEN for binding of microRNAs (miRNA) and thereby modulating PTEN cellular abundance. Studies of the overexpression of PTENP1 all confirm its oncosuppressive function to be mediated through the suppression of cell proliferation, induction of apoptosis, and inhibition of cell migration and invasion of cancer cells of differing types. These oncosuppressive functions are a direct consequence of miRNA binding by PTENP1 and the subsequent liberation of PTEN from miRNA induced suppression. In this chapter, we will focus initially on the description of a high efficiency transient transfection method to introduce and overexpress PTENP1 in the cell type of interest, followed by accurate methodologies to measure transfection efficiency by flow cytometry. We will then continue to describe two methods to analyze cell proliferation, namely the CCK-8 assay and Click-iT® EdU assay. Due to commonalities in the manifestation of the oncosuppressive effects of PTENP1, mediated through its role as a ceRNA, the methods presented in this chapter will have wide applicability to a variety of different cell types.


Subject(s)
MicroRNAs/genetics , PTEN Phosphohydrolase/metabolism , Pseudogenes , Tumor Suppressor Proteins/agonists , 3' Untranslated Regions/genetics , Animals , Binding, Competitive , Cell Count , Cell Division , Cell Line, Tumor , Cloning, Molecular/methods , Colorimetry/methods , DNA Replication , Flow Cytometry/methods , Fluorescent Dyes , Humans , Microscopy, Fluorescence , PTEN Phosphohydrolase/genetics , Plasmids/genetics , Pseudogenes/genetics , Staining and Labeling/methods , Transfection/methods , Tumor Suppressor Proteins/genetics , Tumor Suppressor Proteins/metabolism
4.
Article in English | MEDLINE | ID: mdl-31615872

ABSTRACT

Germline alterations of the tumor suppressor PTEN have been extensively characterized in patients with PTEN hamartoma tumor syndromes, encompassing subsets of Cowden syndrome, Bannayan-Riley-Ruvalcaba syndrome, Proteus and Proteus-like syndromes, as well as autism spectrum disorder. Studies have shown an increase in the risk of developing specific cancer types in the presence of a germline PTEN mutation. Furthermore, outside of the familial setting, somatic variants of PTEN occur in numerous malignancies. Here we introduce and discuss the prospect of moving toward a systems pathology approach for PTEN diagnostics, incorporating clinical and molecular pathology data with the goal of improving the clinical management of patients with a PTEN mutation. Detection of a germline PTEN mutation can inform cancer surveillance and in the case of somatic mutation, have value in predicting disease course. Given that PTEN functions in the PI3K/AKT/mTOR pathway, identification of a PTEN mutation may highlight new therapeutic opportunities and/or inform therapeutic choices.


Subject(s)
Neoplasms/genetics , PTEN Phosphohydrolase/genetics , Autism Spectrum Disorder/genetics , Biomarkers, Tumor/genetics , Genes, Tumor Suppressor , Genetic Testing , Germ-Line Mutation , Hamartoma Syndrome, Multiple/genetics , Molecular Targeted Therapy/methods , PTEN Phosphohydrolase/metabolism , Phosphatidylinositol 3-Kinases
SELECTION OF CITATIONS
SEARCH DETAIL