Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 32
Filter
1.
PLoS Pathog ; 18(1): e1010169, 2022 01.
Article in English | MEDLINE | ID: mdl-34990480

ABSTRACT

Botulinum neurotoxins (BoNTs) are among the deadliest of bacterial toxins. BoNT serotype A and B in particular pose the most serious threat to humans because of their high potency and persistence. To date, there is no effective treatment for late post-exposure therapy of botulism patients. Here, we aim to develop single-domain variable heavy-chain (VHH) antibodies targeting the protease domains (also known as the light chain, LC) of BoNT/A and BoNT/B as antidotes for post-intoxication treatments. Using a combination of X-ray crystallography and biochemical assays, we investigated the structures and inhibition mechanisms of a dozen unique VHHs that recognize four and three non-overlapping epitopes on the LC of BoNT/A and BoNT/B, respectively. We show that the VHHs that inhibit the LC activity occupy the extended substrate-recognition exosites or the cleavage pocket of LC/A or LC/B and thus block substrate binding. Notably, we identified several VHHs that recognize highly conserved epitopes across BoNT/A or BoNT/B subtypes, suggesting that these VHHs exhibit broad subtype efficacy. Further, we identify two novel conformations of the full-length LC/A, that could aid future development of inhibitors against BoNT/A. Our studies lay the foundation for structure-based engineering of protein- or peptide-based BoNT inhibitors with enhanced potencies and cross-subtypes properties.


Subject(s)
Botulinum Toxins/antagonists & inhibitors , Peptide Hydrolases/chemistry , Single-Domain Antibodies , Animals , Botulinum Toxins/chemistry , Protease Inhibitors/pharmacology , Protein Domains/drug effects , Single-Domain Antibodies/pharmacology , Structure-Activity Relationship
2.
PLoS Pathog ; 18(9): e1010713, 2022 09.
Article in English | MEDLINE | ID: mdl-36107831

ABSTRACT

Enteric microbial pathogens, including Escherichia coli, Shigella and Cryptosporidium species, take a particularly heavy toll in low-income countries and are highly associated with infant mortality. We describe here a means to display anti-infective agents on the surface of a probiotic bacterium. Because of their stability and versatility, VHHs, the variable domains of camelid heavy-chain-only antibodies, have potential as components of novel agents to treat or prevent enteric infectious disease. We isolated and characterized VHHs targeting several enteropathogenic E. coli (EPEC) virulence factors: flagellin (Fla), which is required for bacterial motility and promotes colonization; both intimin and the translocated intimin receptor (Tir), which together play key roles in attachment to enterocytes; and E. coli secreted protein A (EspA), an essential component of the type III secretion system (T3SS) that is required for virulence. Several VHHs that recognize Fla, intimin, or Tir blocked function in vitro. The probiotic strain E. coli Nissle 1917 (EcN) produces on the bacterial surface curli fibers, which are the major proteinaceous component of E. coli biofilms. A subset of Fla-, intimin-, or Tir-binding VHHs, as well as VHHs that recognize either a T3SS of another important bacterial pathogen (Shigella flexneri), a soluble bacterial toxin (Shiga toxin or Clostridioides difficile toxin TcdA), or a major surface antigen of an important eukaryotic pathogen (Cryptosporidium parvum) were fused to CsgA, the major curli fiber subunit. Scanning electron micrographs indicated CsgA-VHH fusions were assembled into curli fibers on the EcN surface, and Congo Red binding indicated that these recombinant curli fibers were produced at high levels. Ectopic production of these VHHs conferred on EcN the cognate binding activity and, in the case of anti-Shiga toxin, was neutralizing. Taken together, these results demonstrate the potential of the curli-based pathogen sequestration strategy described herein and contribute to the development of novel VHH-based gut therapeutics.


Subject(s)
Bacterial Toxins , Cryptosporidiosis , Cryptosporidium , Enteropathogenic Escherichia coli , Probiotics , Single-Domain Antibodies , Humans , Antigens, Surface , Congo Red , Flagellin , Type III Secretion Systems , Virulence Factors/genetics
3.
Infect Immun ; 90(2): e0051521, 2022 02 17.
Article in English | MEDLINE | ID: mdl-34898253

ABSTRACT

Typhoid toxin is secreted by the typhoid fever-causing bacterial pathogen Salmonella enterica serovar Typhi and has tropism for immune cells and brain endothelial cells. Here, we generated a camelid single-domain antibody (VHH) library from typhoid toxoid-immunized alpacas and identified 41 VHHs selected on the glycan receptor-binding PltB and nuclease CdtB. VHHs exhibiting potent in vitro neutralizing activities from each sequence-based family were epitope binned via competition enzyme-linked immunosorbent assays (ELISAs), leading to 6 distinct VHHs, 2 anti-PltBs (T2E7 and T2G9), and 4 anti-CdtB VHHs (T4C4, T4C12, T4E5, and T4E8), whose in vivo neutralizing activities and associated toxin-neutralizing mechanisms were investigated. We found that T2E7, T2G9, and T4E5 effectively neutralized typhoid toxin in vivo, as demonstrated by 100% survival of mice administered a lethal dose of typhoid toxin and with little to no typhoid toxin-mediated upper motor function defect. Cumulatively, these results highlight the potential of the compact antibodies to neutralize typhoid toxin by targeting the glycan-binding and/or nuclease subunits.


Subject(s)
Camelids, New World , Single-Domain Antibodies , Typhoid Fever , Animals , Endothelial Cells , Mice , Polysaccharides , Salmonella typhi , Typhoid Fever/microbiology
4.
J Biol Chem ; 292(40): 16677-16687, 2017 10 06.
Article in English | MEDLINE | ID: mdl-28842484

ABSTRACT

Numerous Gram-negative pathogens infect eukaryotes and use the type III secretion system (T3SS) to deliver effector proteins into host cells. One important T3SS feature is an extracellular needle with an associated tip complex responsible for assembly of a pore-forming translocon in the host cell membrane. Shigella spp. cause shigellosis, also called bacillary dysentery, and invade colonic epithelial cells via the T3SS. The tip complex of Shigella flexneri contains invasion plasmid antigen D (IpaD), which initially regulates secretion and provides a physical platform for the translocon pore. The tip complex represents a promising therapeutic target for many important T3SS-containing pathogens. Here, in an effort to further elucidate its function, we created a panel of single-VH domain antibodies (VHHs) that recognize distinct epitopes within IpaD. These VHHs recognized the in situ tip complex and modulated the infectious properties of Shigella Moreover, structural elucidation of several IpaD-VHH complexes provided critical insights into tip complex formation and function. Of note, one VHH heterodimer could reduce Shigella hemolytic activity by >80%. Our observations along with previous findings support the hypothesis that the hydrophobic translocator (IpaB in Shigella) likely binds to a region within the tip protein that is structurally conserved across all T3SS-possessing pathogens, suggesting potential therapeutic avenues for managing infections by these pathogens.


Subject(s)
Antigens, Bacterial/immunology , Bacterial Proteins/immunology , Bacterial Secretion Systems/immunology , Epitopes/immunology , Shigella flexneri/immunology , Single-Chain Antibodies/immunology , Animals , Antigens, Bacterial/genetics , Bacterial Proteins/genetics , Bacterial Secretion Systems/genetics , Camelids, New World , Directed Molecular Evolution , Epitopes/genetics , Shigella flexneri/genetics
5.
Parasite Immunol ; 40(11): e12584, 2018 Nov.
Article in English | MEDLINE | ID: mdl-30120856

ABSTRACT

We have recently developed a sensitive and specific urine-based antigen detection ELISA for the diagnosis of visceral leishmaniasis (VL). This assay used rabbit IgG and chicken IgY polyclonal antibodies specific for the Leishmania infantum proteins iron superoxide dismutase 1 (Li-isd1), tryparedoxin1 (Li-txn1) and nuclear transport factor 2 (Li-ntf2). However, polyclonal antibodies have limitations for upscaling and continuous supply. To circumvent these hurdles, we began to develop immortalized monoclonal antibodies. We opted for recombinant camelid VHHs because the technology for their production is well established and they do not have Fc, hence providing less ELISA background noise. We report here an assay development using VHHs specific for Li-isd1 and Li-ntf2. This new assay was specific and had analytical sensitivity of 15-45 pg/mL of urine. The clinical sensitivity was comparable to that obtained with the ELISA assembled with conventional rabbit and chicken antibodies to detect these two antigens. Therefore, similar to our former studies with conventional antibodies, the future inclusion of VHH specific for Li-txn1 and/or other antigens should further increase the sensitivity of the assay. These results confirm that immortalized VHHs can replace conventional antibodies for the development of an accurate and reproducible antigen detection diagnostic test for VL.


Subject(s)
Antibodies, Protozoan/immunology , Immunologic Tests/methods , Leishmaniasis, Visceral/diagnosis , Single-Domain Antibodies/immunology , Adolescent , Adult , Animals , Antibodies, Protozoan/blood , Antigens, Protozoan/blood , Antigens, Protozoan/immunology , Camelids, New World , Chickens , Child , Child, Preschool , Female , Humans , Infant , Leishmania infantum/immunology , Leishmaniasis, Visceral/blood , Leishmaniasis, Visceral/parasitology , Male , Middle Aged , Rabbits , Sensitivity and Specificity , Single-Domain Antibodies/blood , Young Adult
6.
J Biol Chem ; 290(46): 27880-9, 2015 Nov 13.
Article in English | MEDLINE | ID: mdl-26396190

ABSTRACT

Novel antibody constructs consisting of two or more different camelid heavy-chain only antibodies (VHHs) joined via peptide linkers have proven to have potent toxin-neutralizing activity in vivo against Shiga, botulinum, Clostridium difficile, anthrax, and ricin toxins. However, the mechanisms by which these so-called bispecific VHH heterodimers promote toxin neutralization remain poorly understood. In the current study we produced a new collection of ricin-specific VHH heterodimers, as well as VHH homodimers, and characterized them for their ability neutralize ricin in vitro and in vivo. We demonstrate that the VHH heterodimers, but not homodimers were able to completely protect mice against ricin challenge, even though the two classes of antibodies (heterodimers and homodimers) had virtually identical affinities for ricin holotoxin and similar IC50 values in a Vero cell cytotoxicity assay. The VHH heterodimers did differ from the homodimers in their ability to promote toxin aggregation in solution, as revealed through analytical ultracentrifugation. Moreover, the VHH heterodimers that were most effective at promoting ricin aggregation in solution were also the most effective at blocking ricin attachment to cell surfaces. Collectively, these data suggest that heterodimeric VHH-based neutralizing agents may function through the formation of antibody-toxin complexes that are impaired in their ability to access host cell receptors.


Subject(s)
Antibodies, Neutralizing/chemistry , Immunoglobulin Heavy Chains/chemistry , Ricin/antagonists & inhibitors , Animals , Antibodies, Neutralizing/immunology , Camelids, New World/immunology , Chlorocebus aethiops , Female , Immunoglobulin Heavy Chains/immunology , Inhibitory Concentration 50 , Mice , Mice, Inbred BALB C , Protein Engineering , Protein Multimerization , Ricin/immunology , Ultracentrifugation , Vero Cells
7.
J Biol Chem ; 290(10): 6584-95, 2015 Mar 06.
Article in English | MEDLINE | ID: mdl-25564615

ABSTRACT

Anthrax disease is caused by a toxin consisting of protective antigen (PA), lethal factor, and edema factor. Antibodies against PA have been shown to be protective against the disease. Variable domains of camelid heavy chain-only antibodies (VHHs) with affinity for PA were obtained from immunized alpacas and screened for anthrax neutralizing activity in macrophage toxicity assays. Two classes of neutralizing VHHs were identified recognizing distinct, non-overlapping epitopes. One class recognizes domain 4 of PA at a well characterized neutralizing site through which PA binds to its cellular receptor. A second neutralizing VHH (JKH-C7) recognizes a novel epitope. This antibody inhibits conversion of the PA oligomer from "pre-pore" to its SDS and heat-resistant "pore" conformation while not preventing cleavage of full-length 83-kDa PA (PA83) by cell surface proteases to its oligomer-competent 63-kDa form (PA63). The antibody prevents endocytosis of the cell surface-generated PA63 subunit but not preformed PA63 oligomers formed in solution. JKH-C7 and the receptor-blocking VHH class (JIK-B8) were expressed as a heterodimeric VHH-based neutralizing agent (VNA2-PA). This VNA displayed improved neutralizing potency in cell assays and protected mice from anthrax toxin challenge with much better efficacy than the separate component VHHs. The VNA protected virtually all mice when separately administered at a 1:1 ratio to toxin and protected mice against Bacillus anthracis spore infection. Thus, our studies show the potential of VNAs as anthrax therapeutics. Due to their simple and stable nature, VNAs should be amenable to genetic delivery or administration via respiratory routes.


Subject(s)
Anthrax/immunology , Antibodies, Bacterial/immunology , Antigens, Bacterial/immunology , Bacterial Toxins/immunology , Immunoglobulin Heavy Chains/immunology , Animals , Anthrax/microbiology , Anthrax/pathology , Anthrax/therapy , Antibodies, Bacterial/administration & dosage , Bacillus anthracis/immunology , Bacillus anthracis/pathogenicity , Bacterial Toxins/antagonists & inhibitors , Camelids, New World/immunology , Epitopes/immunology , Humans , Mice , Spores/immunology , Spores/pathogenicity
8.
Infect Immun ; 83(1): 286-91, 2015 Jan.
Article in English | MEDLINE | ID: mdl-25368111

ABSTRACT

Hemolytic-uremic syndrome (HUS), caused by Shiga toxin (Stx)-producing Escherichia coli (STEC), remains untreatable. Production of human monoclonal antibodies against Stx, which are highly effective in preventing Stx sequelae in animal models, is languishing due to cost and logistics. We reported previously that the production and evaluation of a camelid heavy-chain-only VH domain (VHH)-based neutralizing agent (VNA) targeting Stx1 and Stx2 (VNA-Stx) protected mice from Stx1 and Stx2 intoxication. Here we report that a single intramuscular (i.m.) injection of a nonreplicating adenovirus (Ad) vector carrying a secretory transgene of VNA-Stx (Ad/VNA-Stx) protected mice challenged with Stx2 and protected gnotobiotic piglets infected with STEC from fatal systemic intoxication. One i.m. dose of Ad/VNA-Stx prevented fatal central nervous system (CNS) symptoms in 9 of 10 animals when it was given to piglets 24 h after bacterial challenge and in 5 of 9 animals when it was given 48 h after bacterial challenge, just prior to the onset of CNS symptoms. All 6 placebo animals died or were euthanized with severe CNS symptoms. Ad/VNA-Stx treatment had no impact on diarrhea. In conclusion, Ad/VNA-Stx treatment is effective in protecting piglets from fatal Stx2-mediated CNS complications following STEC challenge. With a low production cost and further development, this could presumably be an effective treatment for patients with HUS and/or individuals at high risk of developing HUS due to exposure to STEC.


Subject(s)
Adenoviruses, Human/genetics , Antibodies, Neutralizing/therapeutic use , Escherichia coli Infections/drug therapy , Escherichia coli O157/immunology , Hemolytic-Uremic Syndrome/drug therapy , Shiga Toxin 1/antagonists & inhibitors , Shiga Toxin 2/antagonists & inhibitors , Animals , Antibodies, Neutralizing/genetics , Disease Models, Animal , Drug Carriers/administration & dosage , Escherichia coli Infections/immunology , Escherichia coli Infections/microbiology , Escherichia coli O157/genetics , Female , Genetic Vectors , Hemolytic-Uremic Syndrome/immunology , Hemolytic-Uremic Syndrome/microbiology , Injections, Intramuscular , Mice , Shiga Toxin 1/immunology , Shiga Toxin 2/immunology , Survival Analysis , Swine , Time Factors
9.
J Infect Dis ; 210(6): 964-72, 2014 Sep 15.
Article in English | MEDLINE | ID: mdl-24683195

ABSTRACT

The incidence of Clostridium difficile infection (CDI) and associated mortality have increased rapidly worldwide in recent years. Therefore, it is critical to develop new therapies for CDI. In this study, we generated a novel, potently neutralizing, tetravalent, and bispecific antibody composed of 2 heavy-chain-only VH (VHH) binding domains against both TcdA and TcdB (designated "ABA") that reverses fulminant CDI in mice infected with an epidemic 027 strain after a single injection of the antibody. We demonstrated that ABA bound to both toxins simultaneously and displayed a significantly enhanced neutralizing activity both in vitro and in vivo. Additionally, ABA was able to broadly neutralize toxins from clinical C. difficile isolates that express both TcdA and TcdB but failed to neutralize the toxin from TcdA(-)TcdB(+) C. difficile strains. This study thus provides a rationale for the development of multivalent VHHs that target both toxins and are broadly neutralizing for treating severe CDI.


Subject(s)
Antibodies, Bacterial/therapeutic use , Bacterial Proteins/immunology , Bacterial Toxins/immunology , Clostridioides difficile/immunology , Enterocolitis, Pseudomembranous/prevention & control , Enterotoxins/immunology , Animals , Binding Sites, Antibody/immunology , Enterocolitis, Pseudomembranous/immunology , Enzyme-Linked Immunosorbent Assay , Female , Mice , Neutralization Tests
10.
J Biol Chem ; 288(51): 36538-47, 2013 Dec 20.
Article in English | MEDLINE | ID: mdl-24202178

ABSTRACT

In an effort to engineer countermeasures for the category B toxin ricin, we produced and characterized a collection of epitopic tagged, heavy chain-only antibody VH domains (VHHs) specific for the ricin enzymatic (RTA) and binding (RTB) subunits. Among the 20 unique ricin-specific VHHs we identified, six had toxin-neutralizing activity: five specific for RTA and one specific for RTB. Three neutralizing RTA-specific VHHs were each linked via a short peptide spacer to the sole neutralizing anti-RTB VHH to create VHH "heterodimers." As compared with equimolar concentrations of their respective monovalent monomers, all three VHH heterodimers had higher affinities for ricin and, in the case of heterodimer D10/B7, a 6-fold increase in in vitro toxin-neutralizing activity. When passively administered to mice at a 4:1 heterodimer:toxin ratio, D10/B7 conferred 100% survival in response to a 10 × LD50 ricin challenge, whereas a 2:1 heterodimer:toxin ratio conferred 20% survival. However, complete survival was achievable when the low dose of D10/B7 was combined with an IgG1 anti-epitopic tag monoclonal antibody, possibly because decorating the toxin with up to four IgGs promoted serum clearance. The two additional ricin-specific heterodimers, when tested in vivo, provided equal or greater passive protection than D10/B7, thereby warranting further investigation of all three heterodimers as possible therapeutics.


Subject(s)
Camelids, New World/immunology , Immunization, Passive , Ricin/immunology , Single-Domain Antibodies/immunology , Amino Acid Sequence , Animals , Antibody Affinity , Binding Sites, Antibody , Female , Mice , Mice, Inbred BALB C , Molecular Sequence Data , Protein Engineering , Protein Multimerization , Single-Domain Antibodies/administration & dosage , Single-Domain Antibodies/chemistry , Single-Domain Antibodies/isolation & purification
11.
Plant J ; 76(4): 709-17, 2013 Nov.
Article in English | MEDLINE | ID: mdl-23980604

ABSTRACT

Single-domain antibodies (sdAbs) are powerful tools for the detection, quantification, purification and subcellular localization of proteins of interest in biological research. We have generated camelid (Lama pacos) heavy chain-only variable VH domain (VH H) libraries against antigens in total cell lysates from Chlamydomonas reinhardtii. The sdAbs in the sera from immunized animals and VH H antibody domains isolated from the library show specificity to C. reinhardtii and lack of reactivity to antigens from four other algae: Chlorella variabilis, Coccomyxa subellipsoidea, Nannochloropsis oceanica and Thalassiosira pseudonana. Antibodies were produced against a diverse representation of antigens as evidenced by sera ELISA and protein-blot analyses. A phage-display library consisting of the VH H region contained at least 10(6) individual transformants, and thus should represent a wide range of C. reinhardtii antigens. The utility of the phage library was demonstrated by using live C. reinhardtii cells to pan for VH H clones with specific recognition of cell-surface epitopes. The lead candidate VH H clones (designated B11 and H10) bound to C. reinhardtii with EC50 values ≤ 0.5 nm. Treatment of cells with VH H B11 fused to the mCherry or green fluorescent proteins allowed brilliant and specific staining of the C. reinhardtii cell wall and analysis of cell-wall genesis during cell division. Such high-complexity VH H antibody libraries for algae will be valuable tools for algal researchers and biotechnologists.


Subject(s)
Antigens, Plant/immunology , Camelids, New World/immunology , Chlamydomonas reinhardtii/immunology , Immunoglobulin Heavy Chains/biosynthesis , Immunoglobulin Variable Region/biosynthesis , Peptide Library , Animals , Antibody Formation/genetics , Antibody Specificity/genetics , Antigens, Plant/genetics , Camelids, New World/genetics , Cell Division/genetics , Cell Division/immunology , Cell Membrane/genetics , Cell Membrane/immunology , Chlamydomonas reinhardtii/genetics , Immunoglobulin Heavy Chains/genetics , Immunoglobulin Variable Region/chemistry , Immunoglobulin Variable Region/genetics , Plantibodies/chemistry , Plantibodies/genetics , Protein Structure, Tertiary/genetics
12.
Lab Invest ; 94(8): 893-905, 2014 Aug.
Article in English | MEDLINE | ID: mdl-24933423

ABSTRACT

The unique ability of human adenovirus serotype 5 (Ad5) to accomplish efficient transduction has allowed the use of Ad5-based vectors for a range of gene therapy applications. Several strategies have been developed to alter tropism of Ad vectors to achieve a cell-specific gene delivery by using fiber modifications via genetic incorporation of targeting motifs. In this study, we have explored the utility of novel anti-human carcinoembryonic antigen (hCEA) single variable domains derived from heavy chain (VHH) camelid family of antibodies to achieve targeted gene transfer. To obtain anti-CEA VHHs, we produced a VHH-display library from peripheral blood lymphocytes RNA of alpacas at the peak of immune response to the hCEA antigen (Ag). We genetically incorporated an anti-hCEA VHH into a de-knobbed Ad5 fiber-fibritin chimera and demonstrated selective targeting to the cognate epitope expressed on the membrane surface of target cells. We report that the anti-hCEA VHH used in this study retains Ag recognition functionality and provides specificity for gene transfer of capsid-modified Ad5 vectors. These studies clearly demonstrated the feasibility of retargeting of Ad5-based gene transfer using VHHs.


Subject(s)
Adenoviridae/physiology , Camelids, New World , Carcinoembryonic Antigen/metabolism , Gene Transfer Techniques , Genetic Vectors/physiology , Immunoglobulin Variable Region/administration & dosage , Viral Tropism , Animals , Antibody Specificity , Capsid Proteins/administration & dosage , Capsid Proteins/genetics , Capsid Proteins/metabolism , Carcinoembryonic Antigen/chemistry , Cell Line , Cell Line, Tumor , Feasibility Studies , Genetic Vectors/administration & dosage , Humans , Immunoglobulin Heavy Chains/administration & dosage , Immunoglobulin Heavy Chains/chemistry , Immunoglobulin Heavy Chains/genetics , Immunoglobulin Heavy Chains/metabolism , Immunoglobulin Variable Region/chemistry , Immunoglobulin Variable Region/genetics , Immunoglobulin Variable Region/metabolism , Male , Peptide Fragments/administration & dosage , Peptide Fragments/chemistry , Peptide Fragments/genetics , Peptide Fragments/metabolism , Recombinant Fusion Proteins/administration & dosage , Recombinant Fusion Proteins/chemistry , Recombinant Fusion Proteins/metabolism , Recombinant Proteins/administration & dosage , Recombinant Proteins/chemistry , Recombinant Proteins/metabolism , Transduction, Genetic , Viral Proteins/administration & dosage , Viral Proteins/genetics , Viral Proteins/metabolism , Virion/physiology
13.
Infect Immun ; 81(12): 4592-603, 2013 Dec.
Article in English | MEDLINE | ID: mdl-24082082

ABSTRACT

Shiga toxin-producing Escherichia coli (STEC) is a major cause of severe food-borne disease worldwide, and two Shiga toxins, Stx1 and Stx2, are primarily responsible for the serious disease consequence, hemolytic-uremic syndrome (HUS). Here we report identification of a panel of heavy-chain-only antibody (Ab) V(H) (VHH) domains that neutralize Stx1 and/or Stx2 in cell-based assays. VHH heterodimer toxin-neutralizing agents containing two linked Stx1-neutralizing VHHs or two Stx2-neutralizing VHHs were generally much more potent at Stx neutralization than a pool of the two-component monomers tested in cell-based assays and in vivo mouse models. We recently reported that clearance of toxins can be promoted by coadministering a VHH-based toxin-neutralizing agent with an antitag monoclonal antibody (MAb), called the "effector Ab," that indirectly decorates each toxin molecule with four Ab molecules. Decoration occurs because the Ab binds to a common epitopic tag present at two sites on each of the two VHH heterodimer molecules that bind to each toxin molecule. Here we show that coadministration of effector Ab substantially improved the efficacy of Stx toxin-neutralizing agents to prevent death or kidney damage in mice following challenge with Stx1 or Stx2. A single toxin-neutralizing agent consisting of a double-tagged VHH heterotrimer--one Stx1-specific VHH, one Stx2-specific VHH, and one Stx1/Stx2 cross-specific VHH--was effective in preventing all symptoms of intoxication from Stx1 and Stx2 when coadministered with effector Ab. Overall, the availability of simple, defined, recombinant proteins that provide cost-effective protection against HUS opens up new therapeutic approaches to managing disease.


Subject(s)
Escherichia coli Infections/immunology , Hemolytic-Uremic Syndrome/immunology , Shiga Toxin 1/immunology , Shiga Toxin 2/immunology , Single-Domain Antibodies/immunology , Animals , Antibodies, Monoclonal/immunology , Enteropathogenic Escherichia coli/immunology , Enteropathogenic Escherichia coli/metabolism , Female , Mice , Molecular Sequence Data , Shiga Toxin 1/metabolism , Shiga Toxin 2/metabolism , Shiga-Toxigenic Escherichia coli/immunology , Shiga-Toxigenic Escherichia coli/metabolism
14.
PLoS One ; 18(11): e0291937, 2023.
Article in English | MEDLINE | ID: mdl-38011121

ABSTRACT

Single-domain antibodies (sdAbs) derived from Camelidae heavy-chain-only antibodies (also called nanobodies or VHHs) have advantages over conventional antibodies in terms of their small size and stability to pH and temperature extremes, their ability to express well in microbial hosts, and to be functionally multimerized for enhanced properties. For these reasons, VHHs are showing promise as enteric disease therapeutics, yet little is known as to their pharmacokinetics (PK) within the digestive tract. To improve understanding of enteric VHH PK, we investigated the functional and structural stability of monomeric and multimeric camelid VHH-agents following in vitro incubation with intestinal extracts (chyme) from rabbits and pigs or fecal extracts from human sources, and in vivo in rabbits. The results showed that unstructured domains such as epitopic tags and flexible spacers composed of different amino acid sequences were rapidly degraded by enteric proteases while the functional core VHHs were much more stable to these treatments. Individual VHHs were widely variable in their functional stability to GI tract proteases. Some VHH-based agents which neutralize enteric Shiga toxin Stx2 displayed a functional stability to chyme incubations comparable to that of Stx2-neutralizing IgG and IgA mAbs, thus indicating that selected nanobodies can approach the functional stability of conventional immunoglobulins. Enteric PK data obtained from in vitro incubation studies were consistent with similar incubations performed in vivo in rabbit surgical gut loops. These findings have broad implications for enteric use of VHH-based agents, particularly VHH fusion proteins.


Subject(s)
Camelids, New World , Single-Domain Antibodies , Animals , Humans , Rabbits , Swine , Immunoglobulin Heavy Chains , Antibodies, Monoclonal , Amino Acid Sequence , Peptide Hydrolases
15.
Nat Commun ; 14(1): 2338, 2023 04 24.
Article in English | MEDLINE | ID: mdl-37095076

ABSTRACT

Botulinum neurotoxin E (BoNT/E) is one of the major causes of human botulism and paradoxically also a promising therapeutic agent. Here we determined the co-crystal structures of the receptor-binding domain of BoNT/E (HCE) in complex with its neuronal receptor synaptic vesicle glycoprotein 2A (SV2A) and a nanobody that serves as a ganglioside surrogate. These structures reveal that the protein-protein interactions between HCE and SV2 provide the crucial location and specificity information for HCE to recognize SV2A and SV2B, but not the closely related SV2C. At the same time, HCE exploits a separated sialic acid-binding pocket to mediate recognition of an N-glycan of SV2. Structure-based mutagenesis and functional studies demonstrate that both the protein-protein and protein-glycan associations are essential for SV2A-mediated cell entry of BoNT/E and for its potent neurotoxicity. Our studies establish the structural basis to understand the receptor-specificity of BoNT/E and to engineer BoNT/E variants for new clinical applications.


Subject(s)
Botulinum Toxins, Type A , Synaptic Vesicles , Humans , Synaptic Vesicles/metabolism , Botulinum Toxins, Type A/metabolism , Membrane Glycoproteins/metabolism , Nerve Tissue Proteins/metabolism , Protein Binding
16.
Cell Host Microbe ; 31(4): 634-649.e8, 2023 04 12.
Article in English | MEDLINE | ID: mdl-37003258

ABSTRACT

Drug platforms that enable the directed delivery of therapeutics to sites of diseases to maximize efficacy and limit off-target effects are needed. Here, we report the development of PROT3EcT, a suite of commensal Escherichia coli engineered to secrete proteins directly into their surroundings. These bacteria consist of three modular components: a modified bacterial protein secretion system, the associated regulatable transcriptional activator, and a secreted therapeutic payload. PROT3EcT secrete functional single-domain antibodies, nanobodies (Nbs), and stably colonize and maintain an active secretion system within the intestines of mice. Furthermore, a single prophylactic dose of a variant of PROT3EcT that secretes a tumor necrosis factor-alpha (TNF-α)-neutralizing Nb is sufficient to ablate pro-inflammatory TNF levels and prevent the development of injury and inflammation in a chemically induced model of colitis. This work lays the foundation for developing PROT3EcT as a platform for the treatment of gastrointestinal-based diseases.


Subject(s)
Colitis , Single-Domain Antibodies , Animals , Mice , Escherichia coli , Colitis/chemically induced , Colitis/therapy , Tumor Necrosis Factor-alpha/metabolism
17.
Sci Rep ; 12(1): 11664, 2022 07 08.
Article in English | MEDLINE | ID: mdl-35803998

ABSTRACT

Single domain antibodies (sdAbs), also called nanobodies, have substantial biophysical advantages over conventional antibodies and are increasingly being employed as components of immunotherapeutic agents. One particularly favorable property is the ability to link different sdAbs into heteromultimers. This feature allows production of single molecules capable of simultaneously targeting more than one antigen. In addition, cooperative binding of multiple linked sdAbs to non-overlapping epitopes on the same target can produce synergistic improvements in target affinity, variant specificity, and in vivo potencies. Here we seek to test the option of increased component sdAbs in these heteromultimers by testing different sdAb heterohexamers in which each of the six camelid sdAb components (VHHs) can neutralize one of three different Botulinum neurotoxin (BoNT) serotypes, A, B or E. Each heterohexamer bound all three targeted BoNT serotypes and protected mice from at least 100 MIPLD50 of each serotype. To test the potential of mRNA therapeutics encoding long sdAb heteromultimers, one heterohexamer was encoded as replicating RNA (repRNA), formulated with a cationic nanocarrier, and delivered to mice via intramuscular injection. Heterohexamer antitoxin serum expression levels were easily detected by 8 h post-treatment, peaked at 5-10 nM around two days, and persisted for more than three days. Mice treated with the formulated repRNA one day post-treatment survived challenge with 100 MIPLD50 of each toxin serotype, demonstrating the function of all six component VHHs. Use of long sdAb multimers, administered as proteins or repRNA, offer the potential for substantially improved versatility in the development of antibody-based therapeutics.


Subject(s)
Antitoxins , Botulinum Toxins , Single-Domain Antibodies , Animals , Botulinum Toxins/genetics , Mice , RNA , Serogroup , Single-Domain Antibodies/genetics
18.
Int J Parasitol ; 51(9): 761-775, 2021 08.
Article in English | MEDLINE | ID: mdl-33774040

ABSTRACT

Despite the public health impact of childhood diarrhea caused by Cryptosporidium, effective drugs and vaccines against this parasite are unavailable. Efforts to identify vaccine targets have focused on critical externally exposed virulence factors expressed in the parasite s invasive stages. However, no single surface antigen has yet been found that can elicit a significant protective immune response and it is likely that pooling multiple immune targets will be necessary. Discovery of surface proteins on Cryptosporidium sporozoites is therefore vital to this effort to develop a multi-antigenic vaccine. In this study we applied a novel single-domain camelid antibody (VHH) selection method to identify immunogenic proteins expressed on the surface of Cryptosporidium parvum sporozoites. By this approach, VHHs were identified that recognize two sporozoite surface-exposed antigens, the previously identified gp900 and an unrecognized immunogenic protein, Cp-P34. This Cp-P34 antigen, which contains multiple Membrane Occupation and Recognition Nexus (MORN) repeats, is found in excysted sporozoites as well as in the parasite s intracellular stages. Cp-P34 appears to accumulate inside the parasite and transiently appears on the surface of sporozoites to be shed in trails. Identical or nearly identical orthologs of Cp-P34 are found in the Cryptosporidium hominis and Cryptosporidium tyzzeri genomes. Except for the conserved MORN motifs, the Cp-P34 gene shares no significant homology with genes of other protozoans and thus appears to be unique to Cryptosporidium spp. Cp-P34 elicits immune responses in naturally exposed alpacas and warrants further investigation as a potential vaccine candidate.


Subject(s)
Cryptosporidiosis , Cryptosporidium parvum , Protozoan Proteins/genetics , Animals , Cryptosporidium parvum/genetics , Membrane Proteins/genetics , Sporozoites
19.
J Control Release ; 334: 106-113, 2021 06 10.
Article in English | MEDLINE | ID: mdl-33872627

ABSTRACT

For the developing field of gene therapy the successful address of the basic requirement effective gene delivery has remained a critical barrier. In this regard, the "Holy Grail" vector envisioned by the field's pioneers embodied the ability to achieve efficient and specific in vivo gene delivery. Functional linkage of antibody selectivity with viral vector efficiency represented a logical strategy but has been elusive. Here we have addressed this key issue by developing the technical means to pair antibody-based targeting with adenoviral-mediated gene transfer. Our novel method allows efficient and specific gene delivery. Importantly, our studies validated the achievement of this key vectorology mandate in the context of in vivo gene delivery. Vectors capable of effective in vivo delivery embody the potential to dramatically expand the range of successful gene therapy cures.


Subject(s)
Adenoviridae , Single-Domain Antibodies , Adenoviridae/genetics , Gene Transfer Techniques , Genetic Engineering , Genetic Therapy , Genetic Vectors , Single-Domain Antibodies/genetics
20.
Cell Rep ; 30(8): 2526-2539.e6, 2020 02 25.
Article in English | MEDLINE | ID: mdl-32101733

ABSTRACT

Botulinum neurotoxin (BoNT) is one of the most acutely lethal toxins known to humans, and effective treatment for BoNT intoxication is urgently needed. Single-domain antibodies (VHH) have been examined as a countermeasure for BoNT because of their high stability and ease of production. Here, we investigate the structures and the neutralization mechanisms for six unique VHHs targeting BoNT/A1 or BoNT/B1. These studies reveal diverse neutralizing mechanisms by which VHHs prevent host receptor binding or block transmembrane delivery of the BoNT protease domain. Guided by this knowledge, we design heterodimeric VHHs by connecting two neutralizing VHHs via a flexible spacer so they can bind simultaneously to the toxin. These bifunctional VHHs display much greater potency in a mouse co-intoxication model than similar heterodimers unable to bind simultaneously. Taken together, our studies offer insight into antibody neutralization of BoNTs and advance our ability to design multivalent anti-pathogen VHHs with improved therapeutic properties.


Subject(s)
Antitoxins/chemistry , Botulinum Toxins/antagonists & inhibitors , Drug Design , Single-Domain Antibodies/chemistry , Animals , Antibodies, Neutralizing/administration & dosage , Antibodies, Neutralizing/immunology , Botulinum Toxins/chemistry , Cell Membrane/metabolism , Female , Hydrogen-Ion Concentration , Mice , Models, Molecular , Protein Domains , Protein Folding , Protein Multimerization , Receptors, Cell Surface/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL