Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
1.
Cell ; 184(7): 1706-1723.e24, 2021 04 01.
Article in English | MEDLINE | ID: mdl-33761327

ABSTRACT

The recently enriched genomic history of Indigenous groups in the Americas is still meager concerning continental Central America. Here, we report ten pre-Hispanic (plus two early colonial) genomes and 84 genome-wide profiles from seven groups presently living in Panama. Our analyses reveal that pre-Hispanic demographic events contributed to the extensive genetic structure currently seen in the area, which is also characterized by a distinctive Isthmo-Colombian Indigenous component. This component drives these populations on a specific variability axis and derives from the local admixture of different ancestries of northern North American origin(s). Two of these ancestries were differentially associated to Pleistocene Indigenous groups that also moved into South America, leaving heterogenous genetic footprints. An additional Pleistocene ancestry was brought by a still unsampled population of the Isthmus (UPopI) that remained restricted to the Isthmian area, expanded locally during the early Holocene, and left genomic traces up to the present day.


Subject(s)
American Indian or Alaska Native/genetics , Archaeology , Genomics/methods , American Indian or Alaska Native/classification , DNA, Mitochondrial/genetics , Genetic Variation , Genome, Human , Haplotypes , Humans , Phylogeny
2.
BMC Biol ; 17(1): 3, 2019 01 24.
Article in English | MEDLINE | ID: mdl-30674303

ABSTRACT

BACKGROUND: Recent genome studies of modern and ancient samples have proposed that Native Americans derive from a subset of the Eurasian gene pool carried to America by an ancestral Beringian population, from which two well-differentiated components originated and subsequently mixed in different proportion during their spread in the Americas. To assess the timing, places of origin and extent of admixture between these components, we performed an analysis of the Y-chromosome haplogroup Q, which is the only Pan-American haplogroup and accounts for virtually all Native American Y chromosomes in Mesoamerica and South America. RESULTS: Our analyses of 1.5 Mb of 152 Y chromosomes, 34 re-sequenced in this work, support a "coastal and inland routes scenario" for the first entrance of modern humans in North America. We show a major phase of male population growth in the Americas after 15 thousand years ago (kya), followed by a period of constant population size from 8 to 3 kya, after which a secondary sign of growth was registered. The estimated dates of the first expansion in Mesoamerica and the Isthmo-Colombian Area, mainly revealed by haplogroup Q-Z780, suggest an entrance in South America prior to 15 kya. During the global constant population size phase, local South American hints of growth were registered by different Q-M848 sub-clades. These expansion events, which started during the Holocene with the improvement of climatic conditions, can be ascribed to multiple cultural changes rather than a steady population growth and a single cohesive culture diffusion as it occurred in Europe. CONCLUSIONS: We established and dated a detailed haplogroup Q phylogeny that provides new insights into the geographic distribution of its Eurasian and American branches in modern and ancient samples.


Subject(s)
Chromosomes, Human, Y , Genetic Variation , Haplotypes , Indians, North American/genetics , Polymorphism, Single Nucleotide , White People/genetics , Americas , Europe , Genetics, Population , Humans , Phylogeny
3.
Genes (Basel) ; 12(12)2021 11 29.
Article in English | MEDLINE | ID: mdl-34946870

ABSTRACT

The Isthmus of Panama was a crossroads between North and South America during the continent's first peopling (and subsequent movements) also playing a pivotal role during European colonization and the African slave trade. Previous analyses of uniparental systems revealed significant sex biases in the genetic history of Panamanians, as testified by the high proportions of Indigenous and sub-Saharan mitochondrial DNAs (mtDNAs) and by the prevalence of Western European/northern African Y chromosomes. Those studies were conducted on the general population without considering any self-reported ethnic affiliations. Here, we compared the mtDNA and Y-chromosome lineages of a new sample collection from 431 individuals (301 males and 130 females) belonging to either the general population, mixed groups, or one of five Indigenous groups currently living in Panama. We found different proportions of paternal and maternal lineages in the Indigenous groups testifying to pre-contact demographic events and genetic inputs (some dated to Pleistocene times) that created genetic structure. Then, while the local mitochondrial gene pool was marginally involved in post-contact admixtures, the Indigenous Y chromosomes were differentially replaced, mostly by lineages of western Eurasian origin. Finally, our new estimates of the sub-Saharan contribution, on a more accurately defined general population, reduce an apparent divergence between genetic and historical data.


Subject(s)
Chromosomes, Human, Y , DNA, Mitochondrial , Genetic Variation , Indigenous Peoples/genetics , Racial Groups/genetics , Africa South of the Sahara , Black People/genetics , Female , Gene Pool , Genotype , Humans , Male , Panama , Pedigree , Sequence Analysis, DNA
4.
J Infect Dev Ctries ; 6(12): 836-41, 2012 Dec 15.
Article in English | MEDLINE | ID: mdl-23276736

ABSTRACT

INTRODUCTION: Aseptic meningitis outbreaks are commonly caused by viral pathogens with enterovirus a common etiological agent. Between May and June of 2008, an outbreak of 173 cases of aseptic meningitis occurred in the Chiriqui Province of Panama. Molecular techniques were used to identify the etiological agent. METHODOLOGY: Cerebrospinal fluid (CSF) samples from 75 patients were received at the Gorgas Memorial Institute for Health Studies.  RNA extraction and one-step RT-PCR were performed on each sample to determine the presence of enterovirus.  Thirty-four samples which were positive for enterovirus were subject to group-specific PCR, sequencing, and phylogenetic analysis to identify the etiological agent of the outbreak. RESULTS: The CSF of 58 subjects was found positive for the enterovirus family using RT-PCR. Thirty-four samples were found to belong to the enterovirus B group. Phylogenetic analysis of four successfully sequenced samples revealed echovirus 30 as the etiological agent. CONCLUSION: Echovirus 30 is reported as the likely cause of an outbreak of aseptic meningitis in Panama, the first since the 1980s.


Subject(s)
Disease Outbreaks , Echovirus Infections/epidemiology , Echovirus Infections/virology , Meningitis, Aseptic/epidemiology , Meningitis, Aseptic/virology , Adolescent , Cerebrospinal Fluid/virology , Child , Child, Preschool , Cluster Analysis , Enterovirus B, Human/isolation & purification , Female , Humans , Infant , Male , Panama/epidemiology , Phylogeny , RNA, Viral/genetics , RNA, Viral/isolation & purification , Reverse Transcriptase Polymerase Chain Reaction , Sequence Analysis, DNA
5.
PLoS One ; 7(6): e38337, 2012.
Article in English | MEDLINE | ID: mdl-22675545

ABSTRACT

The Isthmus of Panama--the narrow neck of land connecting the northern and southern American landmasses--was an obligatory corridor for the Paleo-Indians as they moved into South America. Archaeological evidence suggests an unbroken link between modern natives and their Paleo-Indian ancestors in some areas of Panama, even if the surviving indigenous groups account for only 12.3% of the total population. To evaluate if modern Panamanians have retained a larger fraction of the native pre-Columbian gene pool in their maternally-inherited mitochondrial genome, DNA samples and historical records were collected from more than 1500 volunteer participants living in the nine provinces and four indigenous territories of the Republic. Due to recent gene-flow, we detected ~14% African mitochondrial lineages, confirming the demographic impact of the Atlantic slave trade and subsequent African immigration into Panama from Caribbean islands, and a small European (~2%) component, indicating only a minor influence of colonialism on the maternal side. The majority (~83%) of Panamanian mtDNAs clustered into native pan-American lineages, mostly represented by haplogroup A2 (51%). These findings reveal an overwhelming native maternal legacy in today's Panama, which is in contrast with the overall concept of personal identity shared by many Panamanians. Moreover, the A2 sub-clades A2ad and A2af (with the previously named 6 bp Huetar deletion), when analyzed at the maximum level of resolution (26 entire mitochondrial genomes), confirm the major role of the Pacific coastal path in the peopling of North, Central and South America, and testify to the antiquity of native mitochondrial genomes in Panama.


Subject(s)
Gene Pool , Genes, Mitochondrial/genetics , DNA, Mitochondrial/genetics , Genealogy and Heraldry , Genetics, Population , Genome, Mitochondrial/genetics , Geography , Haplotypes/genetics , Humans , Indians, North American/genetics , Panama , Phylogeny
6.
J Infect Dev Ctries ; 5(10): 737-41, 2011 Oct 13.
Article in English | MEDLINE | ID: mdl-21997944

ABSTRACT

Rocky Mountain spotted fever (RMSF) is a tick-borne infection caused by Rickettsia rickettsii. We report a cluster of fatal cases of RMSF in 2007 in Panama, involving a pregnant woman and two children from the same family.  The woman presented with a fever followed by respiratory distress, maculopapular rash, and an eschar at the site from which a tick had been removed.  She died four days after disease onset.  This is the second published report of an eschar in a patient confirmed by PCR to be infected with R. rickettsii.  One month later, the children presented within days of one another with fever and rash and died three and four days after disease onset. The diagnosis was confirmed by immunohistochemistry, PCR and sequencing of the genes of R. rickettsii in tissues obtained at autopsy. 


Subject(s)
Rickettsia rickettsii/isolation & purification , Rocky Mountain Spotted Fever/epidemiology , Child, Preschool , Cluster Analysis , DNA, Bacterial/genetics , DNA, Bacterial/isolation & purification , Family Health , Fatal Outcome , Female , Humans , Immunohistochemistry , Microscopy , Panama/epidemiology , Polymerase Chain Reaction , Pregnancy , Rickettsia rickettsii/genetics , Rocky Mountain Spotted Fever/pathology , Sequence Analysis, DNA , Skin/pathology , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL