Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
1.
J Med Virol ; 95(2): e28489, 2023 02.
Article in English | MEDLINE | ID: mdl-36832544

ABSTRACT

Social distancing, mask-wearing, and travel restrictions during the COVID-19 pandemic have significantly impacted the spread of influenza viruses. The objectives of this study were to analyze the pattern of influenza virus circulation with respect to that of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in Bulgaria during the 2021-2022 season and to perform a phylogenetic/molecular analysis of the hemagglutinin (HA) and neuraminidase (NA) sequences of representative influenza strains. Influenza infection was confirmed using real-time reverse transcription polymerase chain reaction in 93 (4.2%) of the 2193 patients with acute respiratory illness tested wherein all detected viruses were subtyped as A(H3N2). SARS-CoV-2 was identified in 377 (24.3%) of the 1552 patients tested. Significant differences in the incidence of influenza viruses and SARS-CoV-2 were found between individual age groups, outpatients/inpatients, and in the seasonal distribution of cases. Two cases of coinfections were identified. In hospitalized patients, the Ct values of influenza viruses at admission were lower in adults aged ≥65 years (indicating higher viral load) than in children aged 0-14 years (p < 0.05). In SARS-CoV-2-positive inpatients, this association was not statistically significant. HA genes of all A(H3N2) viruses analyzed belonged to subclade 3C.2a1b.2a. The sequenced viruses carried 11 substitutions in HA and 5 in NA, in comparison to the vaccine virus A/Cambodia/e0826360/2020, including several substitutions in the HA antigenic sites B and C. This study revealed extensive changes in the typical epidemiology of influenza infection, including a dramatic reduction in the number of cases, diminished genetic diversity of circulating viruses, changes in age, and seasonal distribution of cases.


Subject(s)
COVID-19 , Influenza Vaccines , Influenza, Human , Adult , Child , Humans , Influenza A Virus, H3N2 Subtype/genetics , SARS-CoV-2/genetics , Seasons , Hemagglutinin Glycoproteins, Influenza Virus/genetics , Bulgaria/epidemiology , Phylogeny , Prevalence , Pandemics , COVID-19/epidemiology , RNA, Viral/genetics , Sequence Analysis, DNA , Hemagglutinins , Neuraminidase/genetics
2.
J Med Virol ; 94(12): 6060-6064, 2022 12.
Article in English | MEDLINE | ID: mdl-35902787

ABSTRACT

The evolution of the emerging SARS-CoV-2 variants carrying mutations in the spike protein raises concerns about the possibility of accelerated transmission in the ever-evolving COVID-19 pandemic worldwide. AY.4.2, a sublineage of the Delta variant, was considered a variant under investigation (VUI) and also gained the nickname "Delta Plus," due to its extra mutations, Y145H and A222V. In this study, using genomic epidemiology, we provide the first insights into the introduction of AY.4.2 in Bulgaria and the AY.4.2.1 sublineage that found larger dissemination only in Bulgaria and the United Kingdom.


Subject(s)
COVID-19 , SARS-CoV-2 , Bulgaria/epidemiology , COVID-19/epidemiology , Genomics , Humans , Mutation , Pandemics , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus/genetics
3.
J Med Virol ; 93(6): 3401-3411, 2021 06.
Article in English | MEDLINE | ID: mdl-32779756

ABSTRACT

The objectives of this study were to investigate the prevalence of respiratory syncytial virus (RSV) infections in Bulgaria, to characterize the genetic diversity of the RSV strains, and to perform amino acid sequence analysis of the RSV G protein. Clinical, epidemiological data and nasopharyngeal swabs were prospectively collected from children aged less than 5 years presenting with acute respiratory infections from October 2016 to September 2018. Real-time polymerase chain reaction for 12 respiratory viruses, and sequencing, phylogenetic, and amino acid analyses of the RSV G gene/protein were performed. Of the 875 children examined, 645 (73.7%) were positive for at least one viral respiratory pathogen. RSV was the most commonly detected virus (26.2%), followed by rhinoviruses (15%), influenza A (H3N2) (9.7%), adenoviruses (9%), bocaviruses (7.2%), human metapneumovirus (6.1%), parainfluenza viruses 1/2/3 (5.8%), influenza type B (5.5%), and A(H1N1)pdm09 (3.4%). The detection rate for RSV varied across two winter seasons (36.7% vs 20.3%). RSV-B cases outnumbered those of the RSV-A throughout the study period. RSV was the most common virus detected in patients with bronchiolitis (45.1%) and pneumonia (24%). Phylogenetic analysis indicated that all the sequenced RSV-A strains belonged to the ON1 genotype and the RSV-B strains were classified as BA9 genotype. Amino acid substitutions at 15 and 22 positions of the HVR-2 were identified compared with the ON1 and BA prototype strains, respectively. This study revealed the leading role of RSV as a causative agent of serious respiratory illnesses in early childhood, year-on-year fluctuations in RSV incidence, the dominance of RSV-B, and relatively low genetic diversity in the circulating RSV strains.


Subject(s)
Genotype , Respiratory Syncytial Virus Infections/epidemiology , Respiratory Syncytial Virus, Human/classification , Respiratory Syncytial Virus, Human/genetics , Bulgaria/epidemiology , Child, Preschool , Female , Genetic Variation , Humans , Infant , Infant, Newborn , Male , Molecular Diagnostic Techniques , Phylogeny , Prevalence , Prospective Studies , Respiratory Syncytial Virus Infections/virology , Respiratory Tract Infections/epidemiology , Respiratory Tract Infections/virology , Seasons , Sequence Analysis, DNA , Viral Proteins/genetics , Virus Diseases/classification , Virus Diseases/epidemiology
4.
Intervirology ; 64(4): 194-202, 2021.
Article in English | MEDLINE | ID: mdl-34304230

ABSTRACT

INTRODUCTION: We investigated the prevalence of human metapneumovirus (hMPV) among patients with acute respiratory infections in Bulgaria, and performed genetic characterization of the F gene of these strains. METHODS: Nasopharyngeal swabs collected from patients of a range of ages were tested by using real-time PCR for 12 respiratory viruses. The F gene was sequenced, and phylogenetic and amino acid analyses of the F gene/protein were performed. RESULTS: A total of 1,842 patients were examined during a 3-year period; 1,229 patients (66.7%) were positive for at least one respiratory virus. hMPV was identified in 83 (4.5%) patient samples. Eleven (13%) of hMPV-positive patients were coinfected with another respiratory virus. The hMPV incidence rate in the 2016/2017, 2017/2018, and 2018/2019 winter seasons was 5.4, 5.4, and 3.1%, respectively. hMPV was mainly detected in specimens collected between January and May (89.2% of cases). The incidence of hMPV infection was highest (5.1%) among the youngest age-group (0-4 years), where hMPV was a causative agent in 8.1 and 4.8% of bronchiolitis and pneumonia cases, respectively. Among the patients aged ≥5 years, hMPV was detected in 2.2 and 3.2% of cases of pneumonia and central nervous system infections, respectively. Phylogenetic analysis of the F gene showed that the sequenced hMPV strains belonged to the A2b, B1, and B2 genotypes. Numerous amino acid substitutions were identified compared with the NL00/1 prototype strain. CONCLUSION: This study revealed the significant role of hMPV as a causative agent of serious respiratory illnesses in early childhood, and also demonstrated year-to-year changes in hMPV prevalence and genetic diversity in circulating strains.


Subject(s)
Metapneumovirus , Paramyxoviridae Infections , Respiratory Tract Infections , Bulgaria/epidemiology , Child, Preschool , Genotype , Humans , Infant , Infant, Newborn , Metapneumovirus/genetics , Paramyxoviridae Infections/epidemiology , Phylogeny , Prevalence , Respiratory Tract Infections/epidemiology
5.
Virus Genes ; 57(5): 401-412, 2021 Oct.
Article in English | MEDLINE | ID: mdl-34156583

ABSTRACT

Influenza viruses have a high potential for genetic changes. The objectives of this study were to analyse influenza virus circulation in Bulgaria during the 2019/2020 season, to perform a phylogenetic and molecular analyses of the haemagglutinin (HA) and neuraminidase (NA) sequences of representative influenza strains, and to identify amino acid substitutions compared to the current vaccine strains. Seasonal influenza viruses A(H3N2), A(H1N1)pdm09 and B/Victoria-lineage were detected using a real-time RT-PCR in 323 (23.3%), 149 (10.7%) and 138 (9.9%) out of 1387 patient samples studied, respectively. The HA genes of A(H3N2) viruses analysed belonged to clades 3C.3a (21 strains) and 3C.2a (5 strains): subclades 3C.2a1b + T131K, 3C.2a1b + T135K-B and 3C.2a1b + T135K-A. The clade 3C.3a and subclade 3C.2a1b viruses carried 5 and 14-17 substitutions in HA, as well as 3 and 9 substitutions in NA, respectively, in comparison with the A/Kansas/14/2017 vaccine virus, including some substitutions in the HA antigenic sites A, B, C and E. All 21 A(H1N1)pdm09 viruses sequenced fell into 6B.1A5A subclade. Amino acid sequence analysis revealed the presence of 7-11 substitutions in HA, compared to the A/Brisbane/02/2018 vaccine virus, three of which occurred in antigenic site Sb, along with 6-9 changes at positions in NA. All 10 B/Victoria-lineage viruses sequenced belonged to clade 1A with a triple deletion in HA1 (genetic group 1A(Δ3)B) and carried 7 and 3 substitutions in HA and NA, respectively, with respect to the B/Colorado/06/2017 vaccine virus. The results of this study confirm the rapid evolution of influenza viruses and the need for continuous antigenic and genetic surveillance.


Subject(s)
Hemagglutinin Glycoproteins, Influenza Virus/genetics , Influenza, Human/genetics , Neuraminidase/genetics , Orthomyxoviridae/genetics , Amino Acid Substitution/genetics , Humans , Influenza A Virus, H1N1 Subtype/genetics , Influenza A Virus, H1N1 Subtype/pathogenicity , Influenza A Virus, H3N2 Subtype/genetics , Influenza A Virus, H3N2 Subtype/pathogenicity , Influenza Vaccines/genetics , Influenza Vaccines/therapeutic use , Influenza, Human/virology , Orthomyxoviridae/classification , Orthomyxoviridae/pathogenicity , Phylogeny , Seasons
7.
Viruses ; 16(6)2024 Jun 13.
Article in English | MEDLINE | ID: mdl-38932250

ABSTRACT

This study aimed to determine the incidence and etiological, seasonal, and genetic characteristics of respiratory viral coinfections involving severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Between October 2020 and January 2024, nasopharyngeal samples were collected from 2277 SARS-CoV-2-positive patients. Two multiplex approaches were used to detect and sequence SARS-CoV-2, influenza A/B viruses, and other seasonal respiratory viruses: multiplex real-time polymerase chain reaction (PCR) and multiplex next-generation sequencing. Coinfections of SARS-CoV-2 with other respiratory viruses were detected in 164 (7.2%) patients. The most common co-infecting virus was respiratory syncytial virus (RSV) (38 cases, 1.7%), followed by bocavirus (BoV) (1.2%) and rhinovirus (RV) (1.1%). Patients ≤ 16 years of age had the highest rate (15%) of mixed infections. Whole-genome sequencing produced 19 complete genomes of seasonal respiratory viral co-pathogens, which were subjected to phylogenetic and amino acid analyses. The detected influenza viruses were classified into the genetic groups 6B.1A.5a.2a and 6B.1A.5a.2a.1 for A(H1N1)pdm09, 3C.2a1b.2a.2a.1 and 3C.2a.2b for A(H3N2), and V1A.3a.2 for the B/Victoria lineage. The RSV-B sequences belonged to the genetic group GB5.0.5a, with HAdV-C belonging to type 1, BoV to genotype VP1, and PIV3 to lineage 1a(i). Multiple amino acid substitutions were identified, including at the antibody-binding sites. This study provides insights into respiratory viral coinfections involving SARS-CoV-2 and reinforces the importance of genetic characterization of co-pathogens in the development of therapeutic and preventive strategies.


Subject(s)
COVID-19 , Coinfection , Phylogeny , SARS-CoV-2 , Humans , Coinfection/virology , Coinfection/epidemiology , SARS-CoV-2/genetics , SARS-CoV-2/classification , SARS-CoV-2/isolation & purification , COVID-19/virology , COVID-19/epidemiology , Middle Aged , Adult , Female , Male , Adolescent , Child, Preschool , Child , Aged , Young Adult , Infant , Respiratory Tract Infections/virology , Respiratory Tract Infections/epidemiology , Rhinovirus/genetics , Rhinovirus/classification , Rhinovirus/isolation & purification , Influenza A virus/genetics , Influenza A virus/classification , Influenza A virus/isolation & purification , Respiratory Syncytial Virus, Human/genetics , Respiratory Syncytial Virus, Human/isolation & purification , Respiratory Syncytial Virus, Human/classification , Nasopharynx/virology , Whole Genome Sequencing , China/epidemiology , Seasons , Aged, 80 and over , Genome, Viral , Influenza B virus/genetics , Influenza B virus/isolation & purification , Influenza B virus/classification
8.
Front Microbiol ; 15: 1376389, 2024.
Article in English | MEDLINE | ID: mdl-38628867

ABSTRACT

Background: Respiratory syncytial virus (RSV) is a common cause of upper and lower respiratory tract infections. This study aimed to explore the prevalence of respiratory syncytial virus (RSV) and other respiratory viruses in Bulgaria, characterize the genetic diversity of RSV strains, and perform amino acid sequence analyses of RSV surface and internal proteins. Methods: Clinical and epidemiological data and nasopharyngeal swabs were prospectively collected from patients with acute respiratory infections between October 2020 and May 2023. Real-time PCR for 13 respiratory viruses, whole-genome sequencing, phylogenetic, and amino acid analyses were performed. Results: This study included three epidemic seasons (2020-2021, 2021-2022, and 2022-2023) from week 40 of the previous year to week 20 of the following year. Of the 3,047 patients examined, 1,813 (59.5%) tested positive for at least one viral respiratory pathogen. RSV was the second most detected virus (10.9%) after SARS-CoV-2 (22%). Coinfections between RSV and other respiratory viruses were detected in 68 cases, including 14 with SARS-CoV-2. After two seasons of low circulation, RSV activity increased significantly during the 2022-2023 season. The detection rates of RSV were 3.2, 6.6, and 13.7% in the first, second, and third seasons, respectively. RSV was the most common virus found in children under 5 years old with bronchiolitis (40%) and pneumonia (24.5%). RSV-B drove the 2022-2023 epidemic. Phylogenetic analysis indicated that the sequenced RSV-B strains belonged to the GB5.0.5a and GB5.0.6a genotypes. Amino acid substitutions in the surface and internal proteins, including the F protein antigenic sites were identified compared to the BA prototype strain. Conclusion: This study revealed a strong resurgence of RSV in the autumn of 2022 after the lifting of anti-COVID-19 measures, the leading role of RSV as a causative agent of serious respiratory illnesses in early childhood, and relatively low genetic diversity in circulating RSV strains.

9.
Microorganisms ; 11(8)2023 Aug 09.
Article in English | MEDLINE | ID: mdl-37630601

ABSTRACT

The first recombinant SARS-CoV-2 variants were identified in 2022, causing public health concerns. The importance of recombinant variants has increased especially since the WHO designated the recombinant variant XBB and its lineages as subvariants that require monitoring on 20 November 2022. In this study, we provide the first insights into the new SARS-CoV-2 variant named XAN, a recombinant composed of Omicron sub-lineages BA.2 and BA.5. To our knowledge, this is the first report on the recombinant SARS-CoV-2 XAN variant identified in Bulgaria.

10.
Viruses ; 15(9)2023 09 15.
Article in English | MEDLINE | ID: mdl-37766330

ABSTRACT

The COVID-19 pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has brought about significant challenges worldwide. In this study, we present a comprehensive analysis of the genomic epidemiology and lineage dynamics of SARS-CoV-2 in Bulgaria over a three-year period. Through extensive genomic sequencing and data analysis, we investigated the evolution of the virus, the emergence of variants of concern (VOCs), and their impact on the country's pandemic trajectory. We also assessed the relationship between viral diversity and COVID-19 morbidity and mortality in Bulgaria. Our findings shed light on the temporal and spatial distribution of SARS-CoV-2 lineages and provide crucial insights into the dynamics of the pandemic in the country. The interplay between international travel and viral transmission plays a significant role in the emergence and dissemination of different SARS-CoV-2 variants. The observed proportions of exportation to various continents provide insights into the potential pathways through which these lineages spread globally. Understanding the genomic epidemiology of SARS-CoV-2 in Bulgaria is essential for formulating targeted public health strategies, enhancing vaccination efforts, and effectively managing future outbreaks.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , SARS-CoV-2/genetics , Pandemics , Bulgaria/epidemiology , COVID-19/epidemiology , Genomics
11.
Front Public Health ; 10: 959319, 2022.
Article in English | MEDLINE | ID: mdl-36117597

ABSTRACT

Introduction: This study aimed to determine the prevalence, viral profile, and clinical features of coinfections with severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) and other respiratory viruses. Methods: Nasopharyngeal samples and clinical data of 221 hospitalized patients and 21 outpatients were collected and analyzed. Real-time reverse transcription-polymerase chain reaction was used to detect SARS-CoV-2, influenza virus, respiratory syncytial virus (RSV), human metapneumovirus (HMPV), parainfluenza virus (PIV) 1,2,3, rhinovirus (RV), adenovirus (AdV), bocaviruses (BoV), and seasonal coronaviruses (OC43, 229E, NL63, and HKU1). Viral load was determined by capillary electrophoresis. Results: From November 2020 to mid-March 2022, 242 SARS-CoV-2 positive patients were tested for seasonal respiratory viruses, and 24 (9.9%) cases of coinfections were detected. The distribution of viruses involved in cases of coinfections were as follows: HMPV (n = 6; 25%), RSV (n = 4;16.7%), AdV (n = 4; 16.7%), BoV (n = 4; 16.7%), PIV3 (n = 2; 8.3%), influenza A (H3N2; n = 2; 8.3%), RV (n = 1; 4.62%), and RV+BoV (n = 1; 4.62%). The proportion of detected coinfections with SARS-CoV-2 was highest in children aged 0-5 years (59%), followed by those >65 years (33%). In specimens with detected coinfection, the viral load of influenza was higher than that of SARS-CoV-2, and the mean viral load of SARS-CoV-2 was higher than that of the other respiratory viruses. C-reactive protein (CRP) and lymphocytes count in co-infected patients >65 years of age were on average higher than in children <16 years of age (mean CRP of 161.8 ± 133.1 mg/L; 19.7 ± 3.09% vs. mean 6.9 ± 8.9 mg/L, 0.9 ± 3.1%; p < 0.01). Patients >65 years of age co-infected with SARS-CoV-2 and other respiratory viruses had longer hospital stays than those <16 years of age (mean 9 ± 3.96 days vs. 5.44 ± 1.89 days; p = 0.025). The combination of AdV and SARS-CoV-2 is fatal for patients aged >65 years. Conclusion: In patients aged >65 years, coinfection with SARS CoV-2 and other respiratory viruses, together with concomitant diseases, causes worsening of the clinical picture and complications, and can be fatal. Screening of patients with SARS CoV-2 for other respiratory viruses is needed to select appropriate treatments and prevent a fatal outcome of the disease.


Subject(s)
COVID-19 , Coinfection , Influenza, Human , Adolescent , Aged , C-Reactive Protein , COVID-19/epidemiology , Child , Coinfection/epidemiology , Humans , Influenza A Virus, H3N2 Subtype , Influenza, Human/epidemiology , SARS-CoV-2
12.
Int J Microbiol ; 2021: 7035081, 2021.
Article in English | MEDLINE | ID: mdl-34819956

ABSTRACT

Нuman bocaviruses (hBoVs) are often associated with acute respiratory infections (ARIs). Information on the distribution and molecular epidemiology of hBoVs in Bulgaria is currently limited. The objectives of this study were to investigate the prevalence and genetic characteristics of hBoVs detected in patients with ARIs in Bulgaria. From October 2016 to September 2019, nasopharyngeal/oropharyngeal swabs were prospectively collected from 1842 patients of all ages and tested for 12 common respiratory viruses using a real-time RT-PCR. Phylogenetic and amino acid analyses of the hBoV VP1/VP2 gene/protein were performed. HBoV was identified in 98 (5.3%) patients and was the 6th most prevalent virus after respiratory-syncytial virus (20.4%), influenza A(H1N1)pdm09 (11.1%), A(H3N2) (10.5%), rhinoviruses (9.9%), and adenoviruses (6.8%). Coinfections with other respiratory viruses were detected in 51% of the hBoV-positive patients. Significant differences in the prevalence of hBoVs were found during the different study periods and in patients of different age groups. The detection rate of hBoV was the highest in patients aged 0-4 years (6.9%). In this age group, hBoV was the only identified virus in 9.7%, 5.8%, and 1.1% of the children diagnosed with laryngotracheitis, bronchiolitis, and pneumonia, respectively. Among patients aged ≥5 years, hBoV was detected as a single agent in 2.2% of cases of pneumonia. Phylogenetic analysis showed that all Bulgarian hBoV strains belonged to the hBoV1 genotype. A few amino acid substitutions were identified compared to the St1 prototype strain. This first study amongst an all-age population in Bulgaria showed a significant rate of hBoV detection in some serious respiratory illnesses in early childhood, year-to-year changes in the hBoV prevalence, and low genetic variability in the circulating strains.

13.
J Med Microbiol ; 69(7): 986-998, 2020 Jul.
Article in English | MEDLINE | ID: mdl-32459617

ABSTRACT

Introduction. Influenza viruses evolve rapidly and change their antigenic characteristics, necessitating biannual updates of flu vaccines.Aim. The aim of this study was to characterize influenza viruses circulating in Bulgaria during the 2018/2019 season and to identify amino acid substitutions in them that might impact vaccine effectiveness.Methodology. Typing/subtyping of influenza viruses were performed using real-time Reverse Transcription-PCR (RT-PCR) and results of phylogenetic and amino acid sequence analyses of influenza strains are presented.Results. A(H1N1)pdm09 (66 %) predominated over A(H3N2) (34 %) viruses, with undetected circulation of B viruses in the 2018/2019 season. All A(H1N1)pdm09 viruses studied fell into the recently designated 6B.1A subclade with over 50 % falling in four subgroups: 6B.1A2, 6B.1A5, 6B.1A6 and 6B.1A7. Analysed A(H3N2) viruses belonged to subclades 3C.2a1b and 3C.2a2. Amino acid sequence analysis of 36 A(H1N1)pdm09 isolates revealed the presence of six-ten substitutions in haemagglutinin (HA), compared to the A/Michigan/45/2015 vaccine virus, three of which occurred in antigenic sites Sa and Cb, together with four-nine changes at positions in neuraminidase (NA), and a number of substitutions in internal proteins. HA1 D222N substitution, associated with increased virulence, was identified in two A(H1N1)pdm09 viruses. Despite the presence of several amino acid substitutions, A(H1N1)pdm09 viruses remained antigenically similar to the vaccine virus. The 28 A(H3N2) viruses characterized carried substitutions in HA, including some in antigenic sites A, B, C and E, in NA and internal protein sequences.Conclusion. The results of this study showed the genetic diversity of circulating influenza viruses and the need for continuous antigenic and molecular surveillance.


Subject(s)
Influenza A virus/genetics , Influenza Vaccines/genetics , Influenza, Human/genetics , Amino Acid Sequence/genetics , Amino Acid Substitution/genetics , Antigens, Viral/genetics , Bulgaria/epidemiology , Epidemiological Monitoring , Evolution, Molecular , Genetic Variation/genetics , Hemagglutinin Glycoproteins, Influenza Virus/genetics , Hemagglutinins , History, 21st Century , Humans , Influenza A Virus, H1N1 Subtype/genetics , Influenza A Virus, H3N2 Subtype/genetics , Influenza A virus/immunology , Influenza, Human/history , Influenza, Human/virology , Neuraminidase/genetics , Phylogeny , RNA, Viral/genetics , Seasons , Sequence Analysis, DNA/methods
14.
Braz J Microbiol ; 50(1): 117-125, 2019 Jan.
Article in English | MEDLINE | ID: mdl-30637646

ABSTRACT

Acute lower respiratory infections (ALRIs) are a leading cause of morbidity and hospital admissions in children. This study aimed to determine the viral etiology of these infections in children aged < 5 years during three successive epidemic seasons in Bulgaria. Nasopharyngeal and throat specimens were collected from children with bronchiolitis and pneumonia during the 2015/2016, 2016/2017, and 2017/2018 seasons. The viral etiology was determined by individual real-time PCR assays against 11 respiratory viruses. Of the 515 children examined, 402 (78.1%) were positive for at least one virus. Co-infections with two and three viruses were found in 64 (15.9%) of the infected children. Respiratory syncytial virus (RSV) was the predominant pathogen (37.5%), followed by rhinoviruses (13.8%), metapneumovirus (9.1%), adenoviruses (7%), bocaviruses (7%), influenza A(H1N1)pdm09 (4.9%), A(H3N2) (4.3%), type B (4.1%), and parainfluenza viruses 1/2/3 (2.9%). RSV-B were more prevalent than RSV-A during the three seasons. At least one respiratory virus was identified in 82.6% and 70.1% of the children with bronchiolitis and pneumonia, respectively. Respiratory viruses, especially RSV, are principal pathogens of ALRIs in children aged < 5 years. Diagnostic testing for respiratory viruses using molecular methods may lead to the reduced use of antibiotics and may assist in measures to control infection.


Subject(s)
Respiratory Tract Infections/virology , Virus Diseases/virology , Viruses/isolation & purification , Acute Disease/therapy , Bulgaria , Child, Preschool , Female , Hospitalization , Humans , Infant , Male , Respiratory Tract Infections/therapy , Seasons , Virus Diseases/therapy , Viruses/classification , Viruses/genetics
15.
J Med Microbiol ; 67(2): 228-239, 2018 Feb.
Article in English | MEDLINE | ID: mdl-29297852

ABSTRACT

PURPOSE: Influenza viruses are characterised by high variability, which makes them able to cause annual epidemics. The aim of this study is to determine the antigenic and genetic characteristics of influenza viruses circulating in Bulgaria during the 2016/2017 season. METHODOLOGY: The detection and typing/subtyping of influenza viruses were performed using real time RT-PCR. Results of antigenic characterisation, phylogenetic and amino acid sequence analyses of representative influenza strains are presented herein. RESULTS: The 2016/2017 season was characterised by an early start, an exclusive dominance of A(H3N2) viruses accounting for 93 % of total influenza virus detections, and a low circulation of A(H1N1)pdm09 (4.2 %) and type B (2.5 %) viruses. The analysed A(H3N2) viruses belonged to subclades 3C.2a (52 %) and 3C.2a1 (48 %); all studied A(H1N1)pdm09 and B/Victoria-lineage viruses belonged to subclades 6B.1 and 1A, respectively. The amino acid sequence analysis of 56 A(H3N2) isolates revealed the presence of substitutions in 18 positions in haemagglutinin (HA) as compared to the A/Hong Kong/4801/2014 vaccine virus, seven of which occurred in four antigenic sites, together with changes in 23 positions in neuraminidase (NA), and a number of substitutions in internal proteins PB2, PB1, PB1-F2, PA, NP and NS1. Despite the many amino acid substitutions, A(H3N2) viruses remained antigenically similar to the vaccine strain. Substitutions in HA and NA sequences of A(H1N1)pdm09 and B/Victoria-lineage strains were also identified, including in antigenic sites. CONCLUSION: The results of this study confirm the genetic variability of circulating influenza viruses, particularly A(H3N2), and the need for continued antigenic and molecular surveillance.


Subject(s)
Influenza A Virus, H3N2 Subtype/isolation & purification , Influenza, Human/epidemiology , Influenza, Human/virology , Adolescent , Adult , Amino Acid Substitution , Bulgaria/epidemiology , Child , Child, Preschool , Epidemiological Monitoring , Evolution, Molecular , Female , Genetic Variation , Genome, Viral , Hemagglutinin Glycoproteins, Influenza Virus/genetics , Humans , Influenza A Virus, H1N1 Subtype/classification , Influenza A Virus, H1N1 Subtype/genetics , Influenza A Virus, H1N1 Subtype/isolation & purification , Influenza A Virus, H3N2 Subtype/classification , Influenza A Virus, H3N2 Subtype/genetics , Influenza A Virus, H3N2 Subtype/immunology , Influenza B virus/classification , Influenza B virus/genetics , Influenza B virus/isolation & purification , Male , Neuraminidase/genetics , Phylogeny , RNA, Viral/genetics , Real-Time Polymerase Chain Reaction , Seasons , Sequence Analysis, DNA , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL