ABSTRACT
WD repeat domain 83 opposite strand (WDR83OS) encodes the 106-aa (amino acid) protein Asterix, which heterodimerizes with CCDC47 to form the PAT (protein associated with ER translocon) complex. This complex functions as a chaperone for large proteins containing transmembrane domains to ensure proper folding. Until recently, little was known about the role of WDR83OS or CCDC47 in human disease traits. However, biallelic variants in CCDC47 were identified in four unrelated families with trichohepatoneurodevelopmental syndrome, characterized by a neurodevelopmental disorder (NDD) with liver dysfunction. Three affected siblings in an additional family share a homozygous truncating WDR83OS variant and a phenotype of NDD, dysmorphic features, and liver dysfunction. Using family-based rare variant analyses of exome sequencing (ES) data and case matching through GeneMatcher, we describe the clinical phenotypes of 11 additional individuals in eight unrelated families (nine unrelated families, 14 individuals in total) with biallelic putative truncating variants in WDR83OS. Consistent clinical features include NDD (14/14), facial dysmorphism (13/14), intractable itching (9/14), and elevated bile acids (5/6). Whereas bile acids were significantly elevated in 5/6 of individuals tested, bilirubin was normal and liver enzymes were normal to mildly elevated in all 14 individuals. In three of six individuals for whom longitudinal data were available, we observed a progressive reduction in relative head circumference. A zebrafish model lacking Wdr83os function further supports its role in the nervous system, craniofacial development, and lipid absorption. Taken together, our data support a disease-gene association between biallelic loss-of-function of WDR83OS and a neurological disease trait with hypercholanemia.
ABSTRACT
SRSF1 (also known as ASF/SF2) is a non-small nuclear ribonucleoprotein (non-snRNP) that belongs to the arginine/serine (R/S) domain family. It recognizes and binds to mRNA, regulating both constitutive and alternative splicing. The complete loss of this proto-oncogene in mice is embryonically lethal. Through international data sharing, we identified 17 individuals (10 females and 7 males) with a neurodevelopmental disorder (NDD) with heterozygous germline SRSF1 variants, mostly de novo, including three frameshift variants, three nonsense variants, seven missense variants, and two microdeletions within region 17q22 encompassing SRSF1. Only in one family, the de novo origin could not be established. All individuals featured a recurrent phenotype including developmental delay and intellectual disability (DD/ID), hypotonia, neurobehavioral problems, with variable skeletal (66.7%) and cardiac (46%) anomalies. To investigate the functional consequences of SRSF1 variants, we performed in silico structural modeling, developed an in vivo splicing assay in Drosophila, and carried out episignature analysis in blood-derived DNA from affected individuals. We found that all loss-of-function and 5 out of 7 missense variants were pathogenic, leading to a loss of SRSF1 splicing activity in Drosophila, correlating with a detectable and specific DNA methylation episignature. In addition, our orthogonal in silico, in vivo, and epigenetics analyses enabled the separation of clearly pathogenic missense variants from those with uncertain significance. Overall, these results indicated that haploinsufficiency of SRSF1 is responsible for a syndromic NDD with ID due to a partial loss of SRSF1-mediated splicing activity.
Subject(s)
Intellectual Disability , Neurodevelopmental Disorders , Child , Female , Male , Developmental Disabilities/genetics , Developmental Disabilities/complications , Haploinsufficiency/genetics , Intellectual Disability/pathology , Mutation, Missense/genetics , Neurodevelopmental Disorders/genetics , Phenotype , HumansABSTRACT
Calcium (Ca2+) is a universal second messenger involved in synaptogenesis and cell survival; consequently, its regulation is important for neurons. ATPase plasma membrane Ca2+ transporting 1 (ATP2B1) belongs to the family of ATP-driven calmodulin-dependent Ca2+ pumps that participate in the regulation of intracellular free Ca2+. Here, we clinically describe a cohort of 12 unrelated individuals with variants in ATP2B1 and an overlapping phenotype of mild to moderate global development delay. Additional common symptoms include autism, seizures, and distal limb abnormalities. Nine probands harbor missense variants, seven of which were in specific functional domains, and three individuals have nonsense variants. 3D structural protein modeling suggested that the variants have a destabilizing effect on the protein. We performed Ca2+ imaging after introducing all nine missense variants in transfected HEK293 cells and showed that all variants lead to a significant decrease in Ca2+ export capacity compared with the wild-type construct, thus proving their pathogenicity. Furthermore, we observed for the same variant set an incorrect intracellular localization of ATP2B1. The genetic findings and the overlapping phenotype of the probands as well as the functional analyses imply that de novo variants in ATP2B1 lead to a monogenic form of neurodevelopmental disorder.
Subject(s)
Intellectual Disability , Nervous System Malformations , Neurodevelopmental Disorders , HEK293 Cells , Humans , Intellectual Disability/diagnosis , Intellectual Disability/genetics , Mutation, Missense/genetics , Neurodevelopmental Disorders/genetics , Phenotype , Plasma Membrane Calcium-Transporting ATPases/geneticsABSTRACT
Highly conserved transport protein particle (TRAPP) complexes regulate subcellular trafficking pathways. Accurate protein trafficking has been increasingly recognized to be critically important for normal development, particularly in the nervous system. Variants in most TRAPP complex subunits have been found to lead to neurodevelopmental disorders with diverse but overlapping phenotypes. We expand on limited prior reports on TRAPPC6B with detailed clinical and neuroradiologic assessments, and studies on mechanisms of disease, and new types of variants. We describe 29 additional patients from 18 independent families with biallelic variants in TRAPPC6B. We identified seven homozygous nonsense (n = 12 patients) and eight canonical splice-site variants (n = 17 patients). In addition, we identified one patient with compound heterozygous splice-site/missense variants with a milder phenotype and one patient with homozygous missense variants. Patients displayed non-progressive microcephaly, global developmental delay/intellectual disability, epilepsy and absent expressive language. Movement disorders including stereotypies, spasticity and dystonia were also observed. Brain imaging revealed reductions in cortex, cerebellum and corpus callosum size with frequent white matter hyperintensity. Volumetric measurements indicated globally diminished volume rather than specific regional losses. We identified a reduced rate of trafficking into the Golgi apparatus and Golgi fragmentation in patient-derived fibroblasts that was rescued by wild-type TRAPPC6B. Molecular studies revealed a weakened interaction between mutant TRAPPC6B (c.454C>T, p.Q152*) and its TRAPP binding partner TRAPPC3. Patient-derived fibroblasts from the TRAPPC6B (c.454C>T, p.Q152*) variant displayed reduced levels of TRAPPC6B as well as other TRAPP II complex-specific members (TRAPPC9 and TRAPPC10). Interestingly, the levels of the TRAPPC6B homologue TRAPPC6A were found to be elevated. Moreover, co-immunoprecipitation experiments showed that TRAPPC6A co-precipitates equally with TRAPP II and TRAPP III, while TRAPPC6B co-precipitates significantly more with TRAPP II, suggesting enrichment of the protein in the TRAPP II complex. This implies that variants in TRAPPC6B may preferentially affect TRAPP II functions compared to TRAPP III functions. Finally, we assessed phenotypes in a Drosophila TRAPPC6B-deficiency model. Neuronal TRAPPC6B knockdown impaired locomotion and led to wing posture defects, supporting a role for TRAPPC6B in neuromotor function. Our findings confirm the association of damaging biallelic TRAPPC6B variants with microcephaly, intellectual disability, language impairments, and epilepsy. A subset of patients also exhibited dystonia and/or spasticity with impaired ambulation. These features overlap with disorders arising from pathogenic variants in other TRAPP subunits, particularly components of the TRAPP II complex. These findings suggest that TRAPPC6B is essential for brain development and function, and TRAPP II complex activity may be particularly relevant for mediating this function.
Subject(s)
Dystonia , Epilepsy , Intellectual Disability , Microcephaly , Neurodevelopmental Disorders , Animals , Humans , Microcephaly/genetics , Intellectual Disability/genetics , Vesicular Transport Proteins/genetics , Neurodevelopmental Disorders/genetics , Epilepsy/geneticsABSTRACT
INTRODUCTION: Tonne-Kalscheuer syndrome (TOKAS) is a recessive X-linked multiple congenital anomaly disorder caused by RLIM variations. Of the 41 patients reported, only 7 antenatal cases were described. METHOD: After the antenatal diagnosis of TOKAS by exome analysis in a family followed for over 35 years because of multiple congenital anomalies in five male fetuses, a call for collaboration was made, resulting in a cohort of 11 previously unpublished cases. RESULTS: We present a TOKAS antenatal cohort, describing 11 new cases in 6 French families. We report a high frequency of diaphragmatic hernia (9 of 11), differences in sex development (10 of 11) and various visceral malformations. We report some recurrent dysmorphic features, but also pontocerebellar hypoplasia, pre-auricular skin tags and olfactory bulb abnormalities previously unreported in the literature. Although no clear genotype-phenotype correlation has yet emerged, we show that a recurrent p.(Arg611Cys) variant accounts for 66% of fetal TOKAS cases. We also report two new likely pathogenic variants in RLIM, outside of the two previously known mutational hotspots. CONCLUSION: Overall, we present the first fetal cohort of TOKAS, describe the clinical features that made it a recognisable syndrome at fetopathological examination, and extend the phenotypical spectrum and the known genotype of this rare disorder.
Subject(s)
Genetic Diseases, X-Linked , Humans , Male , Female , Genetic Diseases, X-Linked/genetics , Genetic Diseases, X-Linked/pathology , Genetic Diseases, X-Linked/diagnosis , Fetus/pathology , Mutation , Phenotype , Prenatal Diagnosis , Exome Sequencing , Genetic Association Studies/methods , Abnormalities, Multiple/genetics , Abnormalities, Multiple/pathology , Abnormalities, Multiple/diagnosis , Pedigree , PregnancyABSTRACT
PURPOSE: ARF1 was previously implicated in periventricular nodular heterotopia (PVNH) in only five individuals and systematic clinical characterisation was not available. The aim of this study is to provide a comprehensive description of the phenotypic and genotypic spectrum of ARF1-related neurodevelopmental disorder. METHODS: We collected detailed phenotypes of an international cohort of individuals (n=17) with ARF1 variants assembled through the GeneMatcher platform. Missense variants were structurally modelled, and the impact of several were functionally validated. RESULTS: De novo variants (10 missense, 1 frameshift, 1 splice altering resulting in 9 residues insertion) in ARF1 were identified among 17 unrelated individuals. Detailed phenotypes included intellectual disability (ID), microcephaly, seizures and PVNH. No specific facial characteristics were consistent across all cases, however microretrognathia was common. Various hearing and visual defects were recurrent, and interestingly, some inflammatory features were reported. MRI of the brain frequently showed abnormalities consistent with a neuronal migration disorder. CONCLUSION: We confirm the role of ARF1 in an autosomal dominant syndrome with a phenotypic spectrum including severe ID, microcephaly, seizures and PVNH due to impaired neuronal migration.
Subject(s)
Intellectual Disability , Microcephaly , Periventricular Nodular Heterotopia , Humans , Brain/diagnostic imaging , Genotype , Intellectual Disability/genetics , Phenotype , Seizures/geneticsABSTRACT
KDM4B is a lysine-specific demethylase with a preferential activity on H3K9 tri/di-methylation (H3K9me3/2)-modified histones. H3K9 tri/di-demethylation is an important epigenetic mechanism responsible for silencing of gene expression in animal development and cancer. However, the role of KDM4B on human development is still poorly characterized. Through international data sharing, we gathered a cohort of nine individuals with mono-allelic de novo or inherited variants in KDM4B. All individuals presented with dysmorphic features and global developmental delay (GDD) with language and motor skills most affected. Three individuals had a history of seizures, and four had anomalies on brain imaging ranging from agenesis of the corpus callosum with hydrocephalus to cystic formations, abnormal hippocampi, and polymicrogyria. In mice, lysine demethylase 4B is expressed during brain development with high levels in the hippocampus, a region important for learning and memory. To understand how KDM4B variants can lead to GDD in humans, we assessed the effect of KDM4B disruption on brain anatomy and behavior through an in vivo heterozygous mouse model (Kdm4b+/-), focusing on neuroanatomical changes. In mutant mice, the total brain volume was significantly reduced with decreased size of the hippocampal dentate gyrus, partial agenesis of the corpus callosum, and ventriculomegaly. This report demonstrates that variants in KDM4B are associated with GDD/ intellectual disability and neuroanatomical defects. Our findings suggest that KDM4B variation leads to a chromatinopathy, broadening the spectrum of this group of Mendelian disorders caused by alterations in epigenetic machinery.
Subject(s)
Developmental Disabilities/genetics , Genetic Variation , Jumonji Domain-Containing Histone Demethylases/genetics , Nervous System Malformations/genetics , Animals , Brain/diagnostic imaging , Epigenesis, Genetic , Female , Heterozygote , Hippocampus/diagnostic imaging , Hippocampus/metabolism , Histones/metabolism , Humans , Magnetic Resonance Imaging , Male , Methylation , Mice , Protein Processing, Post-Translational , Seizures/genetics , Signal TransductionABSTRACT
PURPOSE: Within the Solve-RD project (https://solve-rd.eu/), the European Reference Network for Intellectual disability, TeleHealth, Autism and Congenital Anomalies aimed to investigate whether a reanalysis of exomes from unsolved cases based on ClinVar annotations could establish additional diagnoses. We present the results of the "ClinVar low-hanging fruit" reanalysis, reasons for the failure of previous analyses, and lessons learned. METHODS: Data from the first 3576 exomes (1522 probands and 2054 relatives) collected from European Reference Network for Intellectual disability, TeleHealth, Autism and Congenital Anomalies was reanalyzed by the Solve-RD consortium by evaluating for the presence of single-nucleotide variant, and small insertions and deletions already reported as (likely) pathogenic in ClinVar. Variants were filtered according to frequency, genotype, and mode of inheritance and reinterpreted. RESULTS: We identified causal variants in 59 cases (3.9%), 50 of them also raised by other approaches and 9 leading to new diagnoses, highlighting interpretation challenges: variants in genes not known to be involved in human disease at the time of the first analysis, misleading genotypes, or variants undetected by local pipelines (variants in off-target regions, low quality filters, low allelic balance, or high frequency). CONCLUSION: The "ClinVar low-hanging fruit" analysis represents an effective, fast, and easy approach to recover causal variants from exome sequencing data, herewith contributing to the reduction of the diagnostic deadlock.
Subject(s)
Intellectual Disability , Humans , Exome Sequencing , Intellectual Disability/diagnosis , Intellectual Disability/genetics , Alleles , GenotypeABSTRACT
Oculo-auriculo-vertebral spectrum (OAVS) or Goldenhar syndrome is due to an abnormal development of first and second branchial arches derivatives during embryogenesis and is characterised by hemifacial microsomia associated with auricular, ocular and vertebral malformations. The clinical and genetic heterogeneity of this spectrum with incomplete penetrance and variable expressivity, render its molecular diagnosis difficult. Only a few recurrent CNVs and genes have been identified as causatives in this complex disorder so far. Prenatal environmental causal factors have also been hypothesised. However, most of the patients remain without aetiology. In this review, we aim at updating clinical diagnostic criteria and describing genetic and non-genetic aetiologies, animal models as well as novel diagnostic tools and surgical management, in order to help and improve clinical care and genetic counselling of these patients and their families.
Subject(s)
Goldenhar Syndrome , Animals , Branchial Region , DNA Copy Number Variations , Goldenhar Syndrome/diagnosis , Goldenhar Syndrome/genetics , HumansABSTRACT
BACKGROUND: High-impact pathogenic variants in more than a thousand genes are involved in Mendelian forms of neurodevelopmental disorders (NDD). METHODS: This study describes the molecular and clinical characterisation of 28 probands with NDD harbouring heterozygous AGO1 coding variants, occurring de novo for all those whose transmission could have been verified (26/28). RESULTS: A total of 15 unique variants leading to amino acid changes or deletions were identified: 12 missense variants, two in-frame deletions of one codon, and one canonical splice variant leading to a deletion of two amino acid residues. Recurrently identified variants were present in several unrelated individuals: p.(Phe180del), p.(Leu190Pro), p.(Leu190Arg), p.(Gly199Ser), p.(Val254Ile) and p.(Glu376del). AGO1 encodes the Argonaute 1 protein, which functions in gene-silencing pathways mediated by small non-coding RNAs. Three-dimensional protein structure predictions suggest that these variants might alter the flexibility of the AGO1 linker domains, which likely would impair its function in mRNA processing. Affected individuals present with intellectual disability of varying severity, as well as speech and motor delay, autistic behaviour and additional behavioural manifestations. CONCLUSION: Our study establishes that de novo coding variants in AGO1 are involved in a novel monogenic form of NDD, highly similar to the recently reported AGO2-related NDD.
Subject(s)
Argonaute Proteins , Intellectual Disability , Neurodevelopmental Disorders , Humans , Amino Acids/genetics , Heterozygote , Intellectual Disability/genetics , Intellectual Disability/pathology , Neurodevelopmental Disorders/genetics , Neurodevelopmental Disorders/pathology , RNA, Messenger , Argonaute Proteins/geneticsABSTRACT
Cadherins constitute a family of transmembrane proteins that mediate calcium-dependent cell-cell adhesion. The extracellular domain of cadherins consists of extracellular cadherin (EC) domains, separated by calcium binding sites. The EC interacts with other cadherin molecules in cis and in trans to mechanically hold apposing cell surfaces together. CDH2 encodes N-cadherin, whose essential roles in neural development include neuronal migration and axon pathfinding. However, CDH2 has not yet been linked to a Mendelian neurodevelopmental disorder. Here, we report de novo heterozygous pathogenic variants (seven missense, two frameshift) in CDH2 in nine individuals with a syndromic neurodevelopmental disorder characterized by global developmental delay and/or intellectual disability, variable axon pathfinding defects (corpus callosum agenesis or hypoplasia, mirror movements, Duane anomaly), and ocular, cardiac, and genital anomalies. All seven missense variants (c.1057G>A [p.Asp353Asn]; c.1789G>A [p.Asp597Asn]; c.1789G>T [p.Asp597Tyr]; c.1802A>C [p.Asn601Thr]; c.1839C>G [p.Cys613Trp]; c.1880A>G [p.Asp627Gly]; c.2027A>G [p.Tyr676Cys]) result in substitution of highly conserved residues, and six of seven cluster within EC domains 4 and 5. Four of the substitutions affect the calcium-binding site in the EC4-EC5 interdomain. We show that cells expressing these variants in the EC4-EC5 domains have a defect in cell-cell adhesion; this defect includes impaired binding in trans with N-cadherin-WT expressed on apposing cells. The two frameshift variants (c.2563_2564delCT [p.Leu855Valfs∗4]; c.2564_2567dupTGTT [p.Leu856Phefs∗5]) are predicted to lead to a truncated cytoplasmic domain. Our study demonstrates that de novo heterozygous variants in CDH2 impair the adhesive activity of N-cadherin, resulting in a multisystemic developmental disorder, that could be named ACOG syndrome (agenesis of corpus callosum, axon pathfinding, cardiac, ocular, and genital defects).
Subject(s)
Axons/pathology , Cadherins/genetics , Corpus Callosum/pathology , Eye/pathology , Genitalia/pathology , Heart Defects, Congenital/genetics , Neurodevelopmental Disorders/genetics , Frameshift Mutation , Heterozygote , Humans , Neurodevelopmental Disorders/pathologyABSTRACT
BACKGROUND: VPS13D is a large ubiquitin-binding protein playing an essential role in mitophagy by regulating mitochondrial fission. Recently, VPS13D biallelic pathogenic variants have been reported in patients displaying variable neurological phenotypes, with an autosomic recessive inheritance. The objectives of the study were to determine the genetic etiology of a patient with early onset sporadic progressive spastic ataxia, and to investigate the pathogenicity of VPS13D variants through functional studies on patient's skin fibroblasts. CASE PRESENTATION: We report the case of a 51-year-old patient with spastic ataxia, with an acute onset of the disease at age 7. Walking difficulties slowly worsened over time, with the use of a wheelchair since age 26. We have used trio-based whole-exome sequencing (WES) to identify genes associated with spastic ataxia. The impact of the identified variants on mitochondrial function was assessed in patient's fibroblasts by imaging mitochondrial network and measuring level of individual OXPHOS complex subunits. Compound heterozygous variants were identified in VPS13D: c.946C > T, p.Arg316* and c.12416C > T, p.(Ala4139Val). Primary fibroblasts obtained from this patient revealed an altered mitochondrial morphology, and a decrease in levels of proteins from complex I, III and IV. CONCLUSIONS: Our findings confirmed implication of VPS13D in spastic ataxia and provided further support for mitochondrial defects in patient's skin fibroblasts with VPS13D variants. This report of long-term follow up showed a slowly progressive course of the spastic paraplegia with cerebellar features. Furthermore, the performed functional studies could be used as biomarker helping diagnosis of VPS13D-related neurological disorders when molecular results are uneasy to interpret.
Subject(s)
Optic Atrophy , Spastic Paraplegia, Hereditary , Spinocerebellar Ataxias , Adult , Child , Humans , Intellectual Disability , Middle Aged , Muscle Spasticity , Mutation , Pedigree , Phenotype , Proteins , Spastic Paraplegia, Hereditary/genetics , Spinocerebellar Ataxias/genetics , Exome SequencingABSTRACT
Goldenhar syndrome or oculo-auriculo-vertebral spectrum (OAVS) is a complex developmental disorder characterized by asymmetric ear anomalies, hemifacial microsomia, ocular and vertebral defects. We aimed at identifying and characterizing a new gene associated with OAVS. Two affected brothers with OAVS were analyzed by exome sequencing that revealed a missense variant (p.(Asn358Ser)) in the EYA3 gene. EYA3 screening was then performed in 122 OAVS patients that identified the same variant in one individual from an unrelated family. Segregation assessment in both families showed incomplete penetrance and variable expressivity. We investigated this variant in cellular models to determine its pathogenicity and demonstrated an increased half-life of the mutated protein without impact on its ability to dephosphorylate H2AFX following DNA repair pathway induction. Proteomics performed on this cellular model revealed four significantly predicted upstream regulators which are PPARGC1B, YAP1, NFE2L2 and MYC. Moreover, eya3 knocked-down zebrafish embryos developed specific craniofacial abnormalities corroborating previous animal models and supporting its involvement in the OAVS. Additionally, EYA3 gene expression was deregulated in vitro by retinoic acid exposure. EYA3 is the second recurrent gene identified to be associated with OAVS. Moreover, based on protein interactions and related diseases, we suggest the DNA repair as a key molecular pathway involved in craniofacial development.
Subject(s)
DNA Repair , DNA-Binding Proteins/genetics , Goldenhar Syndrome/genetics , Mutation, Missense , Protein Tyrosine Phosphatases/genetics , Adaptor Proteins, Signal Transducing/genetics , Adaptor Proteins, Signal Transducing/metabolism , Amino Acid Sequence , Animals , Child , Child, Preschool , DNA-Binding Proteins/deficiency , Embryo, Nonmammalian , Female , Gene Expression Regulation , Goldenhar Syndrome/metabolism , Goldenhar Syndrome/pathology , Histones/genetics , Histones/metabolism , Humans , Male , NF-E2-Related Factor 2/genetics , NF-E2-Related Factor 2/metabolism , Pedigree , Penetrance , Protein Tyrosine Phosphatases/deficiency , Proto-Oncogene Proteins c-myc/genetics , Proto-Oncogene Proteins c-myc/metabolism , RNA-Binding Proteins/genetics , RNA-Binding Proteins/metabolism , Sequence Alignment , Sequence Homology, Amino Acid , Siblings , Transcription Factors/genetics , Transcription Factors/metabolism , Exome Sequencing , YAP-Signaling Proteins , Zebrafish/embryology , Zebrafish/genetics , Zebrafish/metabolismABSTRACT
PURPOSE: Diseases caused by defects in mitochondrial DNA (mtDNA) maintenance machinery, leading to mtDNA deletions, form a specific group of disorders. However, mtDNA deletions also appear during aging, interfering with those resulting from mitochondrial disorders. METHODS: Here, using next-generation sequencing (NGS) data processed by eKLIPse and data mining, we established criteria distinguishing age-related mtDNA rearrangements from those due to mtDNA maintenance defects. MtDNA deletion profiles from muscle and urine patient samples carrying pathogenic variants in nuclear genes involved in mtDNA maintenance (n = 40) were compared with age-matched controls (n = 90). Seventeen additional patient samples were used to validate the data mining model. RESULTS: Overall, deletion number, heteroplasmy level, deletion locations, and the presence of repeats at deletion breakpoints were significantly different between patients and controls, especially in muscle samples. The deletion number was significantly relevant in adults, while breakpoint repeat lengths surrounding deletions were discriminant in young subjects. CONCLUSION: Altogether, eKLIPse analysis is a powerful tool for measuring the accumulation of mtDNA deletions between patients of different ages, as well as in prioritizing novel variants in genes involved in mtDNA stability.
Subject(s)
Genome, Mitochondrial , Mitochondrial Diseases , Adult , DNA, Mitochondrial/genetics , Genome, Mitochondrial/genetics , High-Throughput Nucleotide Sequencing , Humans , Mitochondria/genetics , Mitochondrial Diseases/diagnosis , Mitochondrial Diseases/genetics , Sequence Deletion/geneticsABSTRACT
BACKGROUND: The development of whole-exome sequencing (WES) and whole-genome sequencing (WGS) for clinical purposes now allows the identification of multiple pathogenic variants in patients with a rare disease. This occurs even when a single causative gene was initially suspected. We report the case of an 8-year-old patient with global developmental delays and dysmorphic features, with a possibly pathogenic variant in three distinct genes. METHODS: Trio-based exome sequencing was performed by IntegraGen SA (Evry, France), on an Illumina HiSeq4000 (Illumina, San Diego, CA, USA). Sanger sequencing was performed to confirm the variants that were found. RESULTS: WES showed the presence of three possibly deleterious variants: KMT2A: c.9068delA;p.Gln3023Argfs*3 de novo, PAX3: c.530C>G;p.Ala177Gly de novo and DLG3: c.127delG;p.Asp43Metfs*22 hemizygous inherited from the mother. KMT2A pathogenic variants are involved in Wiedemann-Steiner syndrome, and PAX3 is the gene responsible for Waardenburg syndrome. DLG3 variants have been described in a non-syndromic X-related intellectual disability. CONCLUSIONS: Considering the dysmorphic features and intellectual disability presented by this patient, these three variants were imputed as pathogenic and their association was considered responsible for his phenotype. Dual molecular diagnoses have already been found by WES in several cohorts with an average of diagnostic yield of 7%. This case demonstrates and reminds us of the importance of analyzing exomes rigorously and exhaustively because, in some cases (< 10%), it can explain superimposed traits or blended phenotypes.
Subject(s)
Abnormalities, Multiple/diagnosis , Abnormalities, Multiple/genetics , Intellectual Disability/diagnosis , Intellectual Disability/genetics , Waardenburg Syndrome/diagnosis , Waardenburg Syndrome/genetics , Beckwith-Wiedemann Syndrome , Child , Genetic Predisposition to Disease , Histone-Lysine N-Methyltransferase/genetics , Humans , Male , Molecular Diagnostic Techniques , Mutation , Myeloid-Lymphoid Leukemia Protein/genetics , Nuclear Proteins/genetics , PAX3 Transcription Factor/genetics , Transcription Factors/genetics , Exome SequencingABSTRACT
PURPOSE: Hermansky-Pudlak syndrome (HPS) is characterized by oculocutaneous albinism, excessive bleeding, and often additional symptoms. Variants in ten different genes have been involved in HPS. However, some patients lack variants in these genes. We aimed to identify new genes involved in nonsyndromic or syndromic forms of albinism. METHODS: Two hundred thirty albinism patients lacking a molecular diagnosis of albinism were screened for pathogenic variants in candidate genes with known links to pigmentation or HPS pathophysiology. RESULTS: We identified two unrelated patients with distinct homozygous variants of the BLOC1S5 gene. Patients had mild oculocutaneous albinism, moderate bleeding diathesis, platelet aggregation deficit, and a dramatically decreased number of platelet dense granules, all signs compatible with HPS. Functional tests performed on platelets of one patient displayed an absence of the obligate multisubunit complex BLOC-1, showing that the variant disrupts BLOC1S5 function and impairs BLOC-1 assembly. Expression of the patient-derived BLOC1S5 deletion in nonpigmented murine Bloc1s5-/- melan-mu melanocytes failed to rescue pigmentation, the assembly of a functional BLOC-1 complex, and melanosome cargo trafficking, unlike the wild-type allele. CONCLUSION: Mutation of BLOC1S5 is disease-causing, and we propose that BLOC1S5 is the gene for a new form of Hermansky-Pudlak syndrome, HPS-11.
Subject(s)
Hermanski-Pudlak Syndrome , Alleles , Animals , Blood Platelets , Hermanski-Pudlak Syndrome/genetics , Humans , Mice , MutationABSTRACT
PURPOSE: To delineate the genotype-phenotype correlation in individuals with likely pathogenic variants in the CLTC gene. METHODS: We describe 13 individuals with de novo CLTC variants. Causality of variants was determined by using the tolerance landscape of CLTC and computer-assisted molecular modeling where applicable. Phenotypic abnormalities observed in the individuals identified with missense and in-frame variants were compared with those with nonsense or frameshift variants in CLTC. RESULTS: All de novo variants were judged to be causal. Combining our data with that of 14 previously reported affected individuals (n = 27), all had intellectual disability (ID), ranging from mild to moderate/severe, with or without additional neurologic, behavioral, craniofacial, ophthalmologic, and gastrointestinal features. Microcephaly, hypoplasia of the corpus callosum, and epilepsy were more frequently observed in individuals with missense and in-frame variants than in those with nonsense and frameshift variants. However, this difference was not significant. CONCLUSIONS: The wide phenotypic variability associated with likely pathogenic CLTC variants seems to be associated with allelic heterogeneity. The detailed clinical characterization of a larger cohort of individuals with pathogenic CLTC variants is warranted to support the hypothesis that missense and in-frame variants exert a dominant-negative effect, whereas the nonsense and frameshift variants would result in haploinsufficiency.
Subject(s)
Epilepsy , Intellectual Disability , Microcephaly , Biological Variation, Population , Corpus Callosum , Epilepsy/genetics , Humans , Intellectual Disability/genetics , Microcephaly/genetics , PhenotypeABSTRACT
Kidney is a highly adenosine triphosphate dependent organ in human body. Healthy and functional mitochondria are essential for normal kidney function. Clinical and genetic variability are the hallmarks of mitochondrial disorders. We report here the involvement of two MT-ND5 pathogenic variants encoding for ND5 subunit of respiratory chain complex I, the m.13513G>A and the m.13514A>G, in adult-onset kidney disease in three unrelated patients. The first patient had myopathy encephalopathy lactic acidosis and stroke syndrome, left ventricular hypertrophy with Wolff-Parkinson-White syndrome and tubulo-interstitial kidney disease. The second presented Leber hereditary optic neuropathy associated with tubulo-interstitial kidney disease. The third presented with an isolated chronic tubulo-interstitial kidney disease. These mutations have never been associated with adulthood mitochondrial nephropathy. These case reports highlight the importance to consider mitochondrial dysfunction in tubulo-interstitial kidney disease.
Subject(s)
Electron Transport Complex I/genetics , Kidney/metabolism , Mitochondrial Proteins/genetics , Nephritis, Interstitial/genetics , Wolff-Parkinson-White Syndrome/genetics , Adult , DNA, Mitochondrial/genetics , Female , Humans , Kidney/pathology , Male , Middle Aged , Mitochondria/genetics , Mutation/genetics , Nephritis, Interstitial/pathology , Phenotype , Wolff-Parkinson-White Syndrome/pathologyABSTRACT
Oculo-auriculo-vertebral spectrum (OAVS) [MIM:164210], or Goldenhar syndrome, is a developmental disorder associating defects of structures derived from the first and second branchial arches. The genetic origin of OAVS is supported by the description of rare deleterious variants in a few causative genes, and several chromosomal copy number variations. We describe here a large family with eight male members affected by a mild form of the spectrum, mostly auricular defects, harboring a hemizygous ZIC3 variant detected by familial exome sequencing: c.159_161dup p.(Ala55dup), resulting in an expansion of the normal 10 consecutive alanine residues to 11 alanines. Segregation analysis shows its presence in all the affected individuals, with a recessive X-linked transmission. Whole-genome sequencing performed in another affected male allowed to exclude linkage disequilibrium between this ZIC3 variant and another potential pathogenic variant in this family. Furthermore, by screening of a cohort of 274 OAVS patients, we found 1 male patient carrying an expansion of 10 to 12 alanines, a variant previously reported in patient presenting with VACTERL. Loss-of-function variants of ZIC3 are causing heterotaxy or cardiac malformations. These alanine expansion variants could have a different impact on the protein and thereby resulting in a different phenotype within the OAVS/VACTERL.
Subject(s)
Anal Canal/abnormalities , Esophagus/abnormalities , Genetic Diseases, X-Linked/genetics , Genetic Predisposition to Disease , Goldenhar Syndrome/genetics , Heart Defects, Congenital/genetics , Homeodomain Proteins/genetics , Kidney/abnormalities , Limb Deformities, Congenital/genetics , Spine/abnormalities , Trachea/abnormalities , Transcription Factors/genetics , Adolescent , Adult , Alanine/genetics , Anal Canal/pathology , Branchial Region/diagnostic imaging , Branchial Region/pathology , Child , Child, Preschool , DNA Copy Number Variations/genetics , Esophagus/pathology , Female , Genetic Diseases, X-Linked/pathology , Goldenhar Syndrome/pathology , Heart Defects, Congenital/pathology , Humans , Infant , Kidney/pathology , Limb Deformities, Congenital/pathology , Loss of Function Mutation/genetics , Male , Repetitive Sequences, Amino Acid/genetics , Spine/pathology , Trachea/pathology , Whole Genome Sequencing , Young AdultABSTRACT
PUM1 has been very recently reported as responsible for a new form of developmental disorder named PADDAS syndrome. We describe here an additional patient with early onset developmental delay, epilepsy, microcephaly, and hair dysplasia, with a de novo heterozygous missense variant of PUM1: c.3439C > T, p.(Arg1147Trp). This variant was absent from databases and predicted deleterious by multiple softwares. The same missense variant has been reported by Gennarino et al., in a girl with much more severe epilepsy. Our report is in favor of a variable expressivity of PADDAS syndrome, and broadens the phenotypic spectrum with the description of hair dysplasia.