Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
Bioorg Chem ; 147: 107408, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38678776

ABSTRACT

This study aimed to assess the antiprotozoal efficacy of dicentrine, an aporphine alkaloid isolated from Ocotea puberula, against amastigote forms of Leishmania (L.) infantum. Our findings reveal that dicentrine demonstrated a notable EC50 value of 10.3 µM, comparable to the positive control miltefosine (EC50 of 10.4 µM), while maintaining moderate toxicity to macrophages (CC50 of 51.9 µM). Utilizing an in silico methodology, dicentrine exhibited commendable adherence to various parameters, encompassing lipophilicity, water solubility, molecule size, polarity, and flexibility. Subsequently, we conducted additional investigations to unravel the mechanism of action, employing Langmuir monolayers as models for protozoan cell membranes. Tensiometry analyses unveiled that dicentrine disrupts the thermodynamic and mechanical properties of the monolayer by expanding it to higher areas and increasing the fluidity of the film. The molecular disorder was further corroborated through dilatational rheology and infrared spectroscopy. These results contribute insights into the role of dicentrine as a potential antiprotozoal drug in its interactions with cellular membranes. Beyond elucidating the mechanism of action at the plasma membrane's external surface, our study sheds light on drug-lipid interface interactions, offering implications for drug delivery and other pharmaceutical applications.


Subject(s)
Antiprotozoal Agents , Antiprotozoal Agents/pharmacology , Antiprotozoal Agents/chemistry , Structure-Activity Relationship , Cell Membrane/drug effects , Aporphines/pharmacology , Aporphines/chemistry , Dose-Response Relationship, Drug , Lauraceae/chemistry , Molecular Structure , Leishmania infantum/drug effects , Parasitic Sensitivity Tests , Animals
2.
Chem Biodivers ; : e202401247, 2024 Jun 19.
Article in English | MEDLINE | ID: mdl-38896778

ABSTRACT

As part of our continuous research for the discovery of bioactive compounds against Trypanosoma cruzi and Leishmania infantum, the alkaloid (6aS)-dicentrine (1) was oxidized to afford (6aS,6S)- (2) and (6aS,6R)- (3) dicentrine-N-oxides. Evaluation of the cytotoxicity against NCTC cells indicated that 2 and 3 are non-toxic (CC50>200 µM) whereas 1 demonstrated CC50 of 52.0 µM. Concerning T. cruzi activity against amastigotes, derivatives 2 and 3 exhibited EC50 values of 9.9 µM (SI>20.2) and 27.5 µM (SI>7.3), respectively, but 1 is inactive (EC50>100 µM). Otherwise, when tested against L. infantum amastigotes, 1 and 3 exhibited EC50 values of 10.3 µM (SI=5.0) and 12.7 µM (SI>15.7), respectively, being 2 inactive (EC50>100 µM). Comparing the effects of positive controls benznidazol (EC50=6.5 µM and SI>30.7) and miltefosine (EC50=10.2 µM and SI=15.2), it was observed a selective antiparasitic activity to diastereomers 2 and 3 against T. cruzi and L. infantum. Considering stereochemical aspects, it was suggested that the configuration of the new stereocenter formed after oxidation of 1 played an important role in the bioactivity against amastigotes of both tested parasites.

SELECTION OF CITATIONS
SEARCH DETAIL