Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
1.
Ecol Modell ; 481: 110374, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37396396

ABSTRACT

[This corrects the article DOI: 10.1016/j.ecolmodel.2021.109690.].

2.
Ecol Modell ; 459: 109690, 2021 Nov 01.
Article in English | MEDLINE | ID: mdl-34732971

ABSTRACT

The ecological importance of mixoplankton within marine protist communities is slowly being recognized. However, most aquatic ecosystem models do not include formulations to model a complete protist community consisting of phytoplankton, protozooplankton and mixoplankton. We introduce PROTIST, a new module for the aquatic ecosystem modelling software Delft3D-WAQ that can model a protist community consisting of two types of phytoplankton (diatoms and green algae), two types of mixoplankton (constitutive mixoplankton and non-constitutive mixoplankton) and protozooplankton. We employed PROTIST to further explore the hypothesis that the biogeochemical gradient of inorganic nutrient and suspended sediment concentrations drives the observed occurrence of constitutive mixoplankton in the Dutch Southern North Sea. To explore this hypothesis, we used 11 1D-vertical aquatic ecosystem models that mimic the abiotic conditions of 11 routine monitoring locations in the Dutch Southern North Sea. Our models result in plausible trophic compositions across the biogeochemical gradient as compared to in-situ data. A sensitivity analysis showed that the dissolved inorganic phosphate and silica concentrations drive the occurrence of constitutive mixoplankton in the Dutch Southern North Sea.

3.
Sci Total Environ ; 695: 133887, 2019 Dec 10.
Article in English | MEDLINE | ID: mdl-31756864

ABSTRACT

Worldwide, eutrophication is threatening lake ecosystems. To support lake management numerous eutrophication models have been developed. Diverse research questions in a wide range of lake ecosystems are addressed by these models. The established models are based on three key approaches: the empirical approach that employs field surveys, the theoretical approach in which models based on first principles are tested against lab experiments, and the process-based approach that uses parameters and functions representing detailed biogeochemical processes. These approaches have led to an accumulation of field-, lab- and model-based knowledge, respectively. Linking these sources of knowledge would benefit lake management by exploiting complementary information; however, the development of a simple tool that links these approaches was hampered by their large differences in scale and complexity. Here we propose a Generically Parameterized Lake eutrophication model (GPLake) that links field-, lab- and model-based knowledge and can be used to make a first diagnosis of lake water quality. We derived GPLake from consumer-resource theory by the principle that lacustrine phytoplankton is typically limited by two resources: nutrients and light. These limitations are captured in two generic parameters that shape the nutrient to chlorophyll-a relations. Next, we parameterized GPLake, using knowledge from empirical, theoretical, and process-based approaches. GPLake generic parameters were found to scale in a comparable manner across data sources. Finally, we show that GPLake can be applied as a simple tool that provides lake managers with a first diagnosis of the limiting factor and lake water quality, using only the parameters for lake depth, residence time and current nutrient loading. With this first-order assessment, lake managers can easily assess measures such as reducing nutrient load, decreasing residence time or changing depth before spending money on field-, lab- or model- experiments to support lake management.

4.
Mar Pollut Bull ; 135: 17-29, 2018 Oct.
Article in English | MEDLINE | ID: mdl-30301027

ABSTRACT

Marine and coastal ecosystems are among the largest contributors to the Earth's productivity. Experimental studies have shown negative impacts of microplastics on individual algae or zooplankton organisms. Consequently, primary and secondary productivity may be negatively affected as well. In this study we attempted to estimate the impacts on productivity at ecosystem level based on reported laboratory findings with a modelling approach, using our biogeochemical model for the North Sea (Delft3D-GEM). Although the model predicted that microplastics do not affect the total primary or secondary production of the North Sea as a whole, the spatial patterns of secondary production were altered, showing local changes of ±10%. However, relevant field data on microplastics are scarce, and strong assumptions were required to include the plastic concentrations and their impacts under field conditions into the model. These assumptions reveal the main knowledge gaps that have to be resolved to improve the first estimate above.


Subject(s)
Ecosystem , Ecotoxicology/methods , Plastics/toxicity , Water Pollutants, Chemical/toxicity , Animals , Environment , Models, Theoretical , North Sea , Phytoplankton/drug effects , Phytoplankton/growth & development , Plastics/analysis , Water Pollutants, Chemical/analysis , Zooplankton/drug effects , Zooplankton/growth & development
5.
Am Nat ; 166(3): E45-61, 2005 Sep.
Article in English | MEDLINE | ID: mdl-16224684

ABSTRACT

In recent years, the population dynamics of plankton in light- or nutrient-limited environments have been studied extensively. Their evolutionary dynamics, however, have received much less attention. Here, we used a modeling approach to study the evolutionary behavior of a population of plankton living in a mixed water column. Initially, the organisms are mixotrophic and thus have both autotrophic and heterotrophic abilities. Through evolution of their trophic preferences, however, they can specialize into separate autotrophs and heterotrophs. It was found that the light intensity gradient enables evolutionary branching and thus may result in the ecological specialization of the mixotrophs. By affecting the gradient, other environmental properties also acquire influence on this evolutionary process. Intermediate mixing intensities, large mixing depths, and high nutrient densities were found to facilitate evolutionary branching and thus specialization. Later results may explain why mixotrophs are often more dominant in oligotrophic systems while specialist strategies are associated with eutrophic systems.


Subject(s)
Biological Evolution , Ecosystem , Plankton/physiology , Adaptation, Physiological , Light , Models, Biological , Nitrogen , Water Movements
6.
Math Biosci ; 193(2): 159-82, 2005 Feb.
Article in English | MEDLINE | ID: mdl-15748728

ABSTRACT

In evolutionary history, several events have occurred at which mixotrophs specialized into pure autotrophs and heterotrophs. We studied the conditions under which such events take place, using the Dynamic Energy Budget (DEB) theory for physiological rules of the organisms' metabolism and Adaptive Dynamics (AD) theory for evolutionary behavior of parameter values. We modeled a population of mixotrophs that can take up dissolved inorganic nutrients by autotrophic assimilation and detritus by heterotrophic assimilation. The organisms have a certain affinity for both pathways; mutations that occur in the affinities enable the population to evolve. One of the possible evolutionary outcomes is a branching point which provides an opportunity for the mixotrophic population to split up and specialize into separate autotrophs and heterotrophs. Evolutionary branching is not a common feature of the studied system, but is found to occur only under specific conditions. These conditions depend on intrinsic properties such as the cost function, the level of the costs and the boundaries of the trait space: only at intermediate cost levels and when an explicit advantage exists to pure strategies over mixed ones may evolutionary branching occur. Usually, such an advantage (and hence evolutionary branching) can be induced by interference between the two affinities, but this result changes due to the constraints on the affinities. Now, only some of the more complicated cost functions give rise to a branching point. In contrast to the intrinsic properties, extrinsic properties such as the total nutrient content or light intensity were found to have no effect on the evolutionary outcomes at all.


Subject(s)
Adaptation, Physiological/physiology , Models, Biological , Models, Statistical , Plankton/physiology , Animals , Biological Evolution
SELECTION OF CITATIONS
SEARCH DETAIL