Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters

Database
Main subject
Country/Region as subject
Language
Affiliation country
Publication year range
1.
For Ecol Manage ; 424: 53-61, 2018 Sep 15.
Article in English | MEDLINE | ID: mdl-29910530

ABSTRACT

The genus Quercus comprises important species in forestry not only for their productive value but also for their ability to withstand drought. Hence an evaluation of inter- and intraspecific variation in drought tolerance is important for selecting the best adapted species and provenances for future afforestation. The presence of long vessels makes it difficult to assess xylem vulnerability to embolism in oak. Thanks to the development of an in situ flow centrifuge equipped with a large rotor, we quantified (i) the between species variability of embolism resistance in four native and two exotic species of oaks in Europe and (ii) the within species variability in Quercus petraea. Embolism resistance varied significantly among species, with the pressure inducing 50% loss of hydraulic conductivity (P50 ) ranging between - 7.0 and -4.2 MPa. Species native to the Mediterranean region were more resistant than pan-European species. In contrast, intraspecific variability in embolism resistance in Q. petraea was low within provenances and null among provenances. A positive correlation between P50 and vessel diameter among the six oak species indicates that the more embolism resistant species had narrower xylem vessels. However, this tradeoff between hydraulic efficiency and safety was not observed between Q. petraea provenances.

2.
New Phytol ; 215(1): 126-139, 2017 Jul.
Article in English | MEDLINE | ID: mdl-28444962

ABSTRACT

Large-scale tree distribution changes have received considerable attention but underlying demo-genetic mechanisms are less well documented. We used a diachronic approach to track species shifts in a mixed oak stand (Quercus petraea-Quercus robur) at a fine spatiotemporal scale. Species assignment was made using single nucleotide polymorphism (SNP) fingerprints employing clustering and parentage analysis. Mating patterns and reproductive success were assessed by parentage analysis. Plot-based inventories of soil parameters and sapling densities provided ecological and demographic information, respectively. Sapling density and reproductive success was higher in Q. petraea than in Q. robur, and were correlated with a spatial expansion of Q. petraea (50% to 67% of the area). Admixed trees resulting from hybridization and backcrossing between the two species were more frequent under the Q. robur canopy. We suspect that species' differential responses to ongoing environmental changes and interspecific competition are the predominant factors accounting for the recruitment success of Q. petraea, while human interference, differential reproduction and hybridization (and backcrossings) are probably of more limited importance. We anticipate in mixed Q. petraea-Q. robur stands, under current ongoing environmental change, that these processes will be enhanced, at least in the western part of the distribution of the two species.


Subject(s)
Quercus/physiology , DNA Fingerprinting , Environment , Hybridization, Genetic , Inbreeding , Polymorphism, Single Nucleotide , Population Dynamics , Quercus/classification , Quercus/genetics , Reproduction , Species Specificity
3.
Evol Lett ; 6(1): 4-20, 2022 Feb.
Article in English | MEDLINE | ID: mdl-35127134

ABSTRACT

The pace of tree microevolution during Anthropocene warming is largely unknown. We used a retrospective approach to monitor genomic changes in oak trees since the Little Ice Age (LIA). Allelic frequency changes were assessed from whole-genome pooled sequences for four age-structured cohorts of sessile oak (Quercus petraea) dating back to 1680, in each of three different oak forests in France. The genetic covariances of allelic frequency changes increased between successive time periods, highlighting genome-wide effects of linked selection. We found imprints of parallel linked selection in the three forests during the late LIA, and a shift of selection during more recent time periods of the Anthropocene. The changes in allelic covariances within and between forests mirrored the documented changes in the occurrence of extreme events (droughts and frosts) over the last 300 years. The genomic regions with the highest covariances were enriched in genes involved in plant responses to pathogens and abiotic stresses (temperature and drought). These responses are consistent with the reported sequence of frost (or drought) and disease damage ultimately leading to the oak dieback after extreme events. They provide support for adaptive evolution of long-lived species during recent climatic changes. Although we acknowledge that other sources (e.g., gene flow, generation overlap) may have contributed to temporal covariances of allelic frequency changes, the consistent and correlated response across the three forests lends support to the existence of a systematic driving force such as natural selection.

4.
Evol Appl ; 13(10): 2772-2790, 2020 Dec.
Article in English | MEDLINE | ID: mdl-33294022

ABSTRACT

Most existing forests are subjected to natural and human-mediated selection pressures, which have increased due to climate change and the increasing needs of human societies for wood, fibre and fuel resources. It remains largely unknown how these pressures trigger evolutionary changes. We address this issue here for temperate European oaks (Quercus petraea and Q. robur), which grow in mixed stands, under even-aged management regimes. We screened numerous functional traits for univariate selection gradients and for expected and observed genetic changes over two successive generations. In both species, growth, leaf morphology and physiology, and defence-related traits displayed significant selection gradients and predicted shifts, whereas phenology, water metabolism, structure and resilience-related traits did not. However, the direction of the selection response and the potential for adaptive evolution differed between the two species. Quercus petraea had a much larger phenotypic and genetic variance of fitness than Q. robur. This difference raises concerns about the adaptive response of Q. robur to contemporary selection pressures. Our investigations suggest that Q. robur will probably decline steadily, particularly in mixed stands with Q. petraea, consistent with the contrasting demographic dynamics of the two species.

5.
Tree Genet Genomes ; 162020 Feb 28.
Article in English | MEDLINE | ID: mdl-32256274

ABSTRACT

BACKGROUND: Predicting the evolutionary potential of natural tree populations requires the estimation of heritability and genetic correlations among traits on which selection acts, as differences in evolutionary success between species may rely on differences for these genetic parameters. In situ estimates are expected to be more accurate than measures done under controlled conditions which do not reflect the natural environmental variance. AIMS: The aim of the current study was to estimate three genetic parameters (i.e. heritability, evolvability and genetic correlations) in a natural mixed oak stand composed of Quercus petraea and Quercus robur about 100 years old, for 58 traits of ecological and functional relevance (growth, reproduction, phenology, physiology, resilience, structure, morphology and defence). METHODS: First we estimated genetic parameters directly in situ using realized genomic relatedness of adult trees and parentage relationships over two generations to estimate the traits additive variance. Secondly, we benefited from existing ex situ experiments (progeny tests and conservation collection) installed with the same populations, thus allowing comparisons of in situ heritability estimates with more traditional methods. RESULTS: Heritability and evolvability estimates obtained with different methods varied substantially and showed large confidence intervals, however we found that in situ were less precise than ex situ estimates, and assessments over two generations (with deeper relatedness) improved estimates of heritability while large sampling sizes are needed for accurate estimations. At the biological level, heritability values varied moderately across different ecological and functional categories of traits, and genetic correlations among traits were conserved over the two species. CONCLUSION: We identified limits for using realized genomic relatedness in natural stands to estimate the genetic variance, given the overall low variance of genetic relatedness and the rather low sampling sizes of currently used long term genetic plots in forestry. These limits can be overcome if larger sample sizes are considered, or if the approach is extended over the next generation.

6.
Tree Physiol ; 39(10): 1736-1749, 2019 10 01.
Article in English | MEDLINE | ID: mdl-31553461

ABSTRACT

The vulnerability of forest species and tree populations to climate change is related to the exposure of the ecosystem to extreme climatic conditions and to the adaptive capacity of the population to cope with those conditions. Adaptive capacity is a relatively under-researched topic within the forest science community, and there is an urgent need to understand to what extent particular combinations of traits have been shaped by natural selection under climatic gradients, potentially resulting in adaptive multi-trait associations. Thus, our aim was to quantify genetic variation in several leaf and woody traits that may contribute to multi-trait associations in which intra-specific variation could represent a source for species adaptation to climate change. A multi-trait approach was performed using nine Quercus petraea provenances originating from different locations that cover most of the species' distribution range over Europe and that were grown in a common garden. Multiple adaptive differences were observed between oak provenances but also some evolutionary stasis. In addition, our results revealed higher genetic differentiation in traits related to phenology and growth than in those related to xylem anatomy, physiology and hydraulics, for which no genetic differentiation was observed. The multiple associations between those traits and climate variables resulting from multivariate and path analyses suggest a multi-trait association largely involving phenological and growth traits for Q. petraea.


Subject(s)
Quercus , Climate Change , Ecosystem , Europe , Phenotype
SELECTION OF CITATIONS
SEARCH DETAIL