Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 54
Filter
1.
J Org Chem ; 89(19): 13894-13912, 2024 Oct 04.
Article in English | MEDLINE | ID: mdl-39302672

ABSTRACT

Incorporation of chlorides in coordination complexes, prepared by reactions in CHCl3, stimulated MP2 and DFT studies of its complete hydrolysis mechanisms. In excellent agreement with previous experimental results, the most important mechanism for CHCl3 basic hydrolysis at room temperature is the radical one producing :CCl2. The latter inserts into the H-O bond of H2O yielding dichloromethanol (1). The hydrolysis mechanism of α-H-lacking PhCCl3 to the corresponding dichloro(phenyl)methanol (3) was also studied. 1 decomposes by H2O to formyl chloride (2) and HCl. 2, following a variety of pathways, leads to known CHCl3 hydrolysis products, such as CO (4) and formic acid (6), via the intermediates chloromethanediol (5), s-cis, s-trans-dihydroxycarbene (ct-7), and s-trans, s-trans-dihydroxycarbene (tt-7). Interestingly, both ct-7 and tt-7 intermediates have recently been implicated in the reduction of CO2 with H2 to 6. The conversion of CO to HCOOH was studied. Most of the reactions studied are asynchronous concerted processes, the radical mechanism being a multistep one. The synthetic utility of this mechanism is briefly mentioned. To avoid chloride ions when performing reactions in CHCl3, we should use the solvent at room temperature even in the presence of water. This has been verified further by coordination chemistry reactions in progress.

2.
Inorg Chem ; 63(7): 3229-3249, 2024 Feb 19.
Article in English | MEDLINE | ID: mdl-38317481

ABSTRACT

The two-electron reductive activation of O2 to O22- is of particular interest to the scientific community mainly due to the use of peroxides as green oxidants and in powerful fuel cells. Despite of the great importance of vanadium(IV) species to activate the two-electron reductive activation of O2, the mechanism is still unclear. Reaction of VIVO2+ species with the tridentate-planar N,N,N-carboxamide (ΗL) ligands in solution (CH3OH:H2O) under atmospheric O2, at room temperature, resulted in the quick formation of [VV(═O)(η2-O2)(κ3-L)(H2O)] and cis-[VV(═O)2(κ3-L)] compounds. Oxidation of the VIVO2+ complexes with the sterically hindered tridentate-planar N,N,N-carboxamide ligands by atmospheric O2 gave only cis-[VV(═O)2(κ3-L)] compounds. The mechanism of formation of [VV(═O)(η2-O2)(κ3-L)(H2O)] (I) and cis-[VV(═O)2(κ3-L)] (II) complexes vs time, from the interaction of [VIV(═O)(κ3-L)(Η2Ο)2]+ with atmospheric O2, was investigated with 51V, 1H NMR, UV-vis, cw-X-band EPR, and 18O2 labeling IR and resonance Raman spectroscopies revealing the formation of a stable intermediate (Id). EPR, MS, and theoretical calculations of the mechanism of the formation of I and II revealed a pathway, through a binuclear [VIV(═O)(κ3-L)(H2O)(η1,η1-O2)VIV(═O)(κ3-L)(H2O)]2+ intermediate. The results from cw-EPR, 1H NMR spectroscopies, cyclic voltammetry, and the reactivity of the complexes [VIV(═O)(κ3-L)(Η2Ο)2]+ toward O2 reduction fit better to an intermediate with a binuclear nature. Dynamic experiments in combination with computational calculations were undertaken to fully elucidate the mechanism of the O2 reduction to O22- by [VIV(═O)(κ3-L)(Η2Ο)2]+. The galvanic cell {Zn|VIII,VII||Id, [VIVO(κ3-L)(H2O)2]+|O2|C(s)} was manufactured, demonstrating the important applicability of this new chemistry to Zn|H2O2 fuel cells technology generating H2O2 in situ from the atmospheric O2.

3.
Inorg Chem ; 61(46): 18434-18449, 2022 Nov 21.
Article in English | MEDLINE | ID: mdl-36357045

ABSTRACT

Reaction of VIVOCl2 with the nonplanar tetradentate N4 bis-quinoline ligands yielded four oxidovanadium(IV) compounds of the general formula cis-[VIV(O)(Cl)(N4)]Cl. Sequential treatment of the two nonmethylated N4 oxidovanadium(IV) compounds with KF and NaClO4 resulted in the isolation of the species with the general formula cis-[VIV(O)(F)(N4)]ClO4. In marked contrast, the methylated N4 oxidovanadium(IV) derivatives are inert toward KF reaction due to steric hindrance, as evidenced by EPR and theoretical calculations. The oxidovanadium(IV) compounds were characterized by single-crystal X-ray structure analysis, cw EPR spectroscopy, and magnetic susceptibility. The crystallographic characterization showed that the vanadium compounds have a highly distorted octahedral coordination environment and the d(VIV-F) = 1.834(1) Å is the shortest to be reported for (oxido)(fluorido)vanadium(IV) compounds. The experimental EPR parameters of the VIVO2+ species deviate from the ones calculated by the empirical additivity relationship and can be attributed to the axial donor atom trans to the oxido group and the distorted VIV coordination environment. The vanadium compounds act as catalysts toward alkane oxidation by aqueous H2O2 with moderate ΤΟΝ up to 293 and product yields of up to 29% (based on alkane); the vanadium(IV) is oxidized to vanadium(V), and the ligands remain bound to the vanadium atom during the catalysis, as determined by 51V and 1H NMR spectroscopies. The cw X-band EPR studies proved that the mechanism of the catalytic reaction is through hydroxyl radicals. The chloride substitution reaction in the cis-[VIV(O)(Cl)(N4)]+ species by fluoride and the mechanism of the alkane oxidation were studied by DFT calculations.


Subject(s)
Chlorides , Vanadium Compounds , Fluorides , Vanadium , Ligands , Hydrogen Peroxide , Catalysis , Alkanes
4.
Inorg Chem ; 61(50): 20253-20267, 2022 Dec 19.
Article in English | MEDLINE | ID: mdl-36461927

ABSTRACT

Hafnium(IV) molecular species have gained increasing attention due to their numerous applications ranging from high-resolution nanolithography, heterogeneous catalysis, and electronics to the design of molecule-based building blocks in metal-organic frameworks (MOFs), with applications in gas separation, sorption, luminescence sensing, and interim storage of radioactive waste. Despite great potential, their chemistry is relatively underdeveloped. Here, we use strong chelators (2Z-6Z)-piperidine-2,6-dione (H3pidiox) and 2,3-dihydroxybenzaldehyde oxime (H3dihybo) to synthesize the first ever reported pentanuclear {Hf5/H3pidiox} and hexanuclear {Hf6/H3dihybo} clusters (HfOCs). The {Hf6} clusters adopt unique core structures [Hf6IV(µ3-O)2(µ-O)3] with a trigonal-prismatic arrangement of the six hafnium atoms and have been characterized via single-crystal X-ray diffraction analysis, UV-vis spectroscopy in the solid state, NMR, fluorescence spectroscopy, and high-resolution mass spectrometry in solution. One-dimensional (1D) and two-dimensional (2D) 1H NMR and mass spectroscopies reveal the exceptional thermodynamic stability of the HfOCs in solution. Interestingly, the conjunction of the oxime group with the catechol resulted in the remarkable reduction of the clusters' band gap, below 2.51 eV. Another prominent feature is the occurrence of pronounced metalloaromaticity of the triangular {Hf3} metallic component revealed by its NICSzz scan curve calculated by means of density functional theory (DFT). The NICSzz(1) value of -44.6 ppm is considerably higher than the -29.7 ppm found at the same level of theory for the benzene ring. Finally, we investigated the luminescence properties of the clusters where 1 emits light in the violet region despite the lack of fluorescence of the free H3pidiox ligand, whereas the {Hf6} 3 shifts the violet-emitting light of the H3dihybo to lower energy. DFT calculations show that this fluorescence behavior stems from ligand-centered molecular orbital transitions and that HfIV coordination has a modulating effect on the photophysics of these HfOCs. This work not only represents a significant milestone in the construction of stable low-band-gap multinuclear HfIV clusters with unique structural features and metal-centered aromaticity but also reveals the potential of Hf(IV) molecule-based materials with applications in sensing, catalysis, and electronic devices.

5.
J Phys Chem A ; 125(34): 7457-7472, 2021 Sep 02.
Article in English | MEDLINE | ID: mdl-34415753

ABSTRACT

A comprehensive exploration of the anomeric and Perlin effects in a series of 2-substituted-2-fluorotetrahydro-2H-pyrans employing sensitive structural, energetic, and NMR probes calculated by density functional theory (DFT) and natural bond orbital (NBO) approaches is undertaken. We used a wide variety of X substituents exhibiting diverse electronic features (σ-donors, σ-donors/π-donors, and σ-donors/π-acceptors). It is noteworthy that a group of 8 substituents (NHMe, SCN, OBr, NO3, OCl, Cl, OF, and Br) favor the axial conformations, while a group of 13 substituents (NO2, NF2, NH2, CN, SH, H, N3, B(OH)2, OMe, BH2, OH, Me, and Ph) favor the equatorial conformations. Interestingly, a group of 6 substituents (NH2, NHMe, NF2, OF, OCl, and OBr) are responsible for the observed normal Perlin effect while the remaining 16 substituents induce the reverse Perlin effect. An exhaustive investigation of possible correlations of anomeric and Perlin effect descriptors with structural, energetic, one-bond 1JC-F couplings and the nucleophilicity of X descriptors demonstrated the general relationship of the Perlin and anomeric effects and manifested their common stereoelectronic origin.

6.
Inorg Chem ; 59(13): 8946-8959, 2020 Jul 06.
Article in English | MEDLINE | ID: mdl-32623891

ABSTRACT

A comprehensive exploration of the inverse trans-influence (ITI) phenomenon in a series of cis-[UVI(O)(L)Cl4]0/- and trans-[UVI(O)(L)Cl4]0/- complexes involving a wide variety of neutral and anionic unidentate ligands L, using relativistic density functional theory, threw light on the still-intriguing physics of ITI, elucidated its origin, and deployed the ligands L in cis- and trans-ITI sequences (ladders). ITI is produced for the complete set of L in both series of [U(O)(L)Cl4]0/- complexes, but this is not reflected in the thermodynamic stability of the [U(O)(L)Cl4]0/- isomers. In effect the hard and strong σ-donor anionic ligands stabilize the trans isomers, but the opposite is true for the soft σ-donor/π-donor neutral and anionic ligands that stabilize the cis isomers. According to the ITI%(U-L) metrics the hard strong σ-donor anionic ligands exert stronger ITI than the soft σ-donor/π-donor neutral ones, while according to the ITI%(U-O) metrics ITI is produced only for the more stable trans-[U(O)(L)Cl4]0/- isomers involving the anionic ligands. In contrast the neutral ligands in the more stable cis-[U(O)(L)Cl4]0/- isomers produce the normal cis influence (CI). Furthermore, the more electronegative ligands produce stronger ITI. ITI%(U-O) cis- and trans-philicity ladders are also built for both series of complexes employing the isotropic σiso(SO) 17O NMR shielding constants as a sensitive metric of the ITI phenomenon. The NMR ITI%(U-O) metrics are consistent with the ITI%(U-O) ones illustrating that the isotropic 17O NMR shifts are sensitive metrics of the covalency of the multiple U-O bonding mode and, hence, of the ITI phenomenon. Interestingly the 2σ BD(U-O) natural bond orbitals play a key role in tuning the bond length and covalency of the U-O bond through the 2σ(U≡O) → 2σ*(U≡O) hyperconjugative interactions. The assessment of the magnitude of the ITI in the [UVI(O)(L)Cl4]0/- complexes and the recognition of the factors affecting ITI dispose a guide to experimentalists working in the area of uranium chemistry to develop strategies for stabilizing uranium-ligand linkages.

7.
Inorg Chem ; 59(24): 18345-18357, 2020 Dec 21.
Article in English | MEDLINE | ID: mdl-33289378

ABSTRACT

The chelating catechol/oxime ligand 2,3-dihydroxybenzaldehyde oxime (H3dihybo) has been used to synthesize one titanium(IV) and two zirconium(IV) compounds that have been characterized by single-crystal X-ray diffraction and 1H and 13C NMR, solid-state UV-vis, and ESI-MS spectroscopy. The reaction of TiCl4 with H3dihybo and KOH in methanol, at ambient temperature, yielded the hexanuclear titanium(IV) compound K2[TiIV6(µ3-O)2(µ-O)3(OCH3)4(CH3OH)2(µ-Hdihybo)6]·CH3OH (1), while the reaction of ZrCl4 with H3dihybo and either nBu4NOH or KOH also gave the hexanuclear zirconium(IV) compounds 2 and 3, respectively. Compounds 1-3 have the same structural motif [MIV6(µ3-Ο)2(µ-Ο)3] (M = Ti, Zr), which constitutes a unique example with a trigonal-prismatic arrangement of the six zirconium atoms, in marked contrast to the octahedral arrangement of the six zirconium atoms in all the Zr6 clusters reported thus far, and a unique Zr6 core structure. Multinuclear NMR solution measurements in methanol and water proved that the hexanuclear clusters 1 and 3 retain their integrity. The marriage of the catechol moiety with the oxime group in the ligand H3dihybo proved to be quite efficient in substantially reducing the band gaps of TiO2 and ZrO2 to 1.48 and 2.34 eV for the titanium and zirconium compounds 1 and 3, respectively. The application of 1 and 3 in photocurrent responses was investigated. ESI-MS measurements of the clusters 1 and 3 revealed the existence of the hexanuclear metal core and also the initial formation of trinuclear M3 (M = Ti, Zr) building blocks prior to their self-assembly into the hexanuclear M6 (M = Ti, Zr) species. Density functional theory (DFT) calculations of the NICSzz scan curves of these systems revealed that the triangular M3 (M = Ti, Zr) metallic ring cores exhibit pronounced metalloaromaticity. The latter depends upon the nature of the metallic center with NICSzz(1) values equal to -30 and -42 ppm for the Ti (compound 1) and Zr (compound 2) systems, respectively, comparable to the NICSzz(1) value of the benzene ring of -29.7 ppm calculated at the same level of theory.

8.
J Comput Chem ; 40(29): 2550-2562, 2019 Nov 05.
Article in English | MEDLINE | ID: mdl-31301188

ABSTRACT

The unified term of trans-philicity is proposed to cover the trans-effect/trans-influence concepts. NMR trans-philicity ladders are built for a broad series of square planar trans-Pt(NH3 )2 (Cl)L and trans-Pt(CO)2 (Cl)L complexes employing 35 Cl NMR probe and quantified by calculation of NMR trans-philicity indicators. The trans-philicity is linearly correlated with the ligand electronic PL constant, a measure of the net donor power of the ligand. The nature of cis-ligands does not affect trans-philicity ladders but strongly affects trans-philicity strength. Solvent has significant effect on the σcalcd 35 Cl shielding constants, with the polar Dimethylformamide (DMF) solvent inducing downfield shifts relative to σcalcd 35 Cl with nonpolar benzene solvent. Good correlations between σcalcd 35 Cl shielding constants and the estimated R(Pt-Cl) bond distances demonstrate the relation of trans-philicity with trans-influence and trans-effect phenomena and put the grounds for the establishment of the new concept of trans-philicity in the realm of square planar Pt(II) and other transition metal complexes. © 2019 Wiley Periodicals, Inc.

9.
Inorg Chem ; 58(13): 8596-8606, 2019 Jul 01.
Article in English | MEDLINE | ID: mdl-31180213

ABSTRACT

The 1:1 reaction of trans-[ReIIICl3(PPh3)2(MeCN)] with 2-(ß-naphthalideneamino)-2-hydroxymethyl-1-propanol, H3L, in toluene gave the dinuclear complex [ReIII2Cl4(HL)(PPh3)]·2C7H8 (1·2C7H8), while the 1:2 reaction led to the formation of complex [ReIVCl2(HL)(PPh3)] (2). In both species, the Schiff-base ligand exists in its doubly deprotonated form, HL2-, forming chelate rings around the metallic centers. In addition, 1·2C7H8 displays a unique triple metal-to-metal bond between the two trivalent rhenium ions separated at a 2.229(1) Å bond distance, while in complex [ReIVCl2(HL)(PPh3)] (2) the two aromatic ligands, HL2- and PPh3, occupy axial positions, with the terminal Cl- ions in the trans position. Investigation of the magnetic properties revealed a Curie paramagnetic behavior ( S = 1/2) with a pronounced temperature independent paramagnetism (TIP) for 1·2C7H8 and 2. Both the geometry and the electronic structure of both compounds have been studied by means of density functional theory (DFT) calculations, confirming the triplet and doublet spin ground state of the complexes and furthermore establishing an electron-rich σ2π4δ1δ*1 bond order of 3 for 1·2C7H8. In addition, the absorption spectrum of 1·2C7H8 in CH2Cl2 was simulated by means of DFT calculations and is in excellent agreement with both the crystallographic and theoretical studies. Complex 1·2C7H8 is the first dinuclear rhenium complex with a triple metal-metal bond between trivalent rhenium centers.

10.
Chemistry ; 24(15): 3836-3845, 2018 Mar 12.
Article in English | MEDLINE | ID: mdl-29319211

ABSTRACT

Mixed-valent polyoxometalate (POM) clusters are one of the most interesting host species, showing a wide range of structural features and properties. The facile preparation and functionalisation of a mixed-valent polyoxofluorovanadates is reported, where two electrons are trapped to antipodal sites of the clusters. The first members of this family of clusters with the general formula, [VV12 VIV2 O16 (µ-O)10 (µ3 -O)10 (µ3 -F)2 (L)2 ]6- , where L: py=pyridine (1); pyr=pyrazine (2); im=imidazole (3), are unique organic-inorganic hybrids with the addition of a N-donor ligand at either end of the polyoxofluorovanadate. The composition and connectivity of 1-3 were characterised by single-crystal X-ray diffraction and electrospray ionisation mass spectrometry. Electron paramagnetic resonance spectroscopy revealed that the two well-separated VIV ions in each cluster are fully uncoupled with J=0, giving a degenerate singlet-triplet ground state. This attenuation of the exchange interaction is probed with density functional theoretical calculations that reveal that the inclusion of the fluoride ion in the cluster produces a bond pathway biased toward destructive interference between competing ferromagnetic and antiferromagnetic interactions. These robust molecular materials are the ideal combination of desirable electronic properties, with an organic handle with which they can be integrated into spintronic circuitry for molecular devices.

11.
J Comput Chem ; 38(20): 1780-1788, 2017 07 15.
Article in English | MEDLINE | ID: mdl-28436584

ABSTRACT

The (nitro)(N-methyldithiocarbamato)(trimethylphospane)nickel(II), [Ni(NO2 )(S2 CNHMe)(PMe3 )] complex catalyses efficiently the O-atom transfer reactions to CO and acetylene. Energetically feasible sequence of elementary steps involved in the catalytic cycle of the air oxidation of CO and acetylene are proposed promoted by the Ni(NO2 )(S2 CNHMe)(PMe3 )] ↔ Ni(NO2 )(S2 CNHMe)(PMe3 ) redox couple using DFT methods both in vacuum and dichloromethane solutions. The catalytic air oxidation of HC≡CH involves formation of a five-member metallacycle intermediate, via a [3 + 2] cyclo-addition reaction of HC≡CH to the Ni-N = O moiety of the Ni(NO2 )(S2 CNHMe)(PMe3 )] complex, followed by a ß H-atom migration toward the Cα carbon atom of the coordinated acetylene and release of the oxidation product (ketene). The geometric and energetic reaction profile for the reversible [Ni( κN1-NO2 )(S2 CNHMe)(PMe3 )] ⇌ [Ni( κO,O2-ONO)(S2 CNHMe)(PMe3 )] linkage isomerization has also been modeled by DFT calculations. © 2017 Wiley Periodicals, Inc.

12.
Inorg Chem ; 56(16): 9563-9573, 2017 Aug 21.
Article in English | MEDLINE | ID: mdl-28783350

ABSTRACT

Michael addition (MA) is one of the most well studied chemical transformation in synthetic chemistry. Here, we report the synthesis and crystal structures of a library of 3d/4f coordination clusters (CCs) formulated as [ZnII2YIII2L4(solv)X(Z)Y] and study their catalytic properties toward the MA of nitrostyrenes with barbituric acid derivatives. Each CC presents two borderline hard/soft Lewis acidic ZnII centers and two hard Lewis acidic YIII centers in a defect dicubane topology that brings the two different metals into a proximity of ∼3.3 Å. Density functional theory computational studies suggest that these tetrametallic CCs dissociate in solution to give two catalytically active dimers, each containing one 3d and one 4f metal that act cooperatively. The mechanism of catalysis has been corroborated via NMR, electron paramagnetic resonance, and UV-vis. The present work demonstrates for the first time the successful use of 3d/4f CCs as efficient and high diastereoselective catalysts in MA reactions.

13.
Magn Reson Chem ; 55(2): 145-153, 2017 Feb.
Article in English | MEDLINE | ID: mdl-27628024

ABSTRACT

195 Pt NMR chemical shifts for a series of large-sized photoactivable anticancer diazido-Pt(IV), homopiperizine-Pt(IV) and multifunctional azine-Pt(IV) complexes hardly to be probed experimentally and by sophisticated four-component and two-component relativistic calculations are predicted with high accuracy by density functional theory computational protocols. The calculated 195 Pt NMR chemical shifts constitute a crucial descriptor for making highly predictive one-parameter quantitative structure activity relationships models that help in designing photoactivable Pt(IV)-based antitumor agents with high cytotoxicity and selectivity. Copyright © 2016 John Wiley & Sons, Ltd.


Subject(s)
Antineoplastic Agents/chemistry , Azides/chemistry , Coordination Complexes/chemistry , Magnetic Resonance Spectroscopy/methods , Models, Molecular , Piperazines/chemistry , Platinum , Light , Molecular Structure , Photochemical Processes
14.
Magn Reson Chem ; 55(7): 662-669, 2017 Jul.
Article in English | MEDLINE | ID: mdl-28002879

ABSTRACT

Highly predictive one-parameter quantitative structure-activity relationship models have been developed for platinum-based anticancer drugs using the 195 Pt NMR parameters as strong descriptors. The developed quantitative structure-activity relationship models were applied in diverse homogeneous sets of antiproliferative Pt(II) and Pt(IV) compounds. These observations form the basis for making predictions of cytotoxicity for a broad range of platinum-based antitumor compounds just from inspection of calculated or experimentally determined 195 Pt NMR parameters. Copyright © 2016 John Wiley & Sons, Ltd.


Subject(s)
Antineoplastic Agents/chemistry , Coordination Complexes/chemistry , Platinum/chemistry , Antineoplastic Agents/pharmacology , Coordination Complexes/pharmacology , Magnetic Resonance Spectroscopy , Models, Molecular , Molecular Structure , Quantitative Structure-Activity Relationship , Solvents/chemistry
15.
Inorg Chem ; 55(4): 1364-6, 2016 Feb 15.
Article in English | MEDLINE | ID: mdl-26794835

ABSTRACT

Reaction of the oxidovanadium(IV)-L(N-N) species (L(N-N) is bipy = 2,2'-bipyridine or bipy-like molecules) with either BF4(-) or HF and/or KF results in the formation of compounds of the general formula cis-[V(IV)(═O)(F)(L(N-N))2](+). Structural and spectroscopic (electron paramagnetic resonance) characterization shows that these compounds are in the tetravalent oxidation state containing a terminal fluorido ligand. Density functional theory calculations reveal that the V(IV)-F bond is mainly electrostatic, which is reinforced by reactivity studies that demonstrate the nucleophilicity of the fluoride ligand in a halogen exchange reaction and in fluorination of various organic substrates.

16.
Magn Reson Chem ; 54(8): 656-64, 2016 Aug.
Article in English | MEDLINE | ID: mdl-26990565

ABSTRACT

(195) Pt NMR chemical shifts of octahedral Pt(IV) complexes with general formula [Pt(NO3 )n (OH)6 - n ](2-) , [Pt(NO3 )n (OH2 )6 - n ](4 - n) (n = 1-6), and [Pt(NO3 )6 - n - m (OH)m (OH2 )n ](-2 + n - m) formed by dissolution of platinic acid, H2 [Pt(OH)6 ], in aqueous nitric acid solutions are calculated employing density functional theory methods. Particularly, the gauge-including atomic orbitals (GIAO)-PBE0/segmented all-electron relativistically contracted-zeroth-order regular approximation (SARC-ZORA)(Pt) ∪ 6-31G(d,p)(E)/Polarizable Continuum Model computational protocol performs the best. Excellent second-order polynomial plots of δcalcd ((195) Pt) versus δexptl ((195) Pt) chemical shifts and δcalcd ((195) Pt) versus the natural atomic charge QPt are obtained. Despite of neglecting relativistic and spin orbit effects the good agreement of the calculated δ (195) Pt chemical shifts with experimental values is probably because of the fact that the contribution of relativistic and spin orbit effects to computed σ(iso) (195) Pt magnetic shielding of Pt(IV) coordination compounds is effectively cancelled in the computed δ (195) Pt chemical shifts, because the relativistic corrections are expected to be similar in the complexes and the proper reference standard used. To probe the counter-ion effects on the (195) Pt NMR chemical shifts of the anionic [Pt(NO3 )n (OH)6 - n ](2-) and cationic [Pt(NO3 )n (OH2 )6 - n ](4 - n) (n = 0-3) complexes we calculated the (195) Pt NMR chemical shifts of the neutral (PyH)2 [Pt(NO3 )n (OH)6 - n ] (n = 1-6; PyH = pyridinium cation, C5 H5 NH(+) ) and [Pt(NO3 )n (H2 O)6 - n ](NO3 )4 - n (n = 0-3) complexes. Counter-anion effects are very important for the accurate prediction of the (195) Pt NMR chemical shifts of the cationic [Pt(NO3 )n (OH2 )6 - n ](4 - n) complexes, while counter-cation effects are less important for the anionic [Pt(NO3 )n (OH)6 - n ](2-) complexes. The simple computational protocol is easily implemented even by synthetic chemists in platinum coordination chemistry that dispose limited software availability, or locally existing routines and knowhow. Copyright © 2016 John Wiley & Sons, Ltd.

17.
J Comput Chem ; 36(17): 1334-47, 2015 Jun 30.
Article in English | MEDLINE | ID: mdl-25907151

ABSTRACT

The electronic, bonding, and photophysical properties of one-dimensional [CuCN](n) (n = 1-10) chains, 2-D [CuCN](n) (n = 2-10) nanorings, and 3-D [Cu(n)(CN)(n)](m) (n = 4, m = 2, 3; n = 10, m = 2) tubes are investigated by means of a multitude of computational methodologies using density functional theory (DFT) and time-dependent-density-functional theory (TD-DFT) methods. The calculations revealed that the 2-D [CuCN](n) (n = 2-10) nanorings are more stable than the respective 1-D [CuCN](n) (n = 2-10) linear chains. The 2-D [CuCN](n) (n = 2-10) nanorings are predicted to form 3-D [Cun (CN)(n)](m) (n = 4, m = 2, 3; n = 10, m = 2) tubes supported by weak stacking interactions, which are clearly visualized as broad regions in real space by the 3D plots of the reduced density gradient. The bonding mechanism in the 1-D [CuCN](n) (n = 1-10) chains, 2-D [CuCN](n) (n = 2-10) nanorings, and 3-D [Cu(n)(CN)(n)](m) (n = 4, m = 2, 3; n = 10, m = 2) tubes are easily recognized by a multitude of electronic structure calculation approaches. Particular emphasis was given on the photophysical properties (absorption and emission spectra) of the [CuCN](n) chains, nanorings, and tubes which were simulated by TD-DFT calculations. The absorption and emission bands in the simulated TD-DFT absorption and emission spectra have thoroughly been analyzed and assignments of the contributing principal electronic transitions associated to individual excitations have been made.


Subject(s)
Copper/chemistry , Cyanides/chemistry , Electrons , Quantum Theory , Optics and Photonics
18.
Inorg Chem ; 54(8): 3979-88, 2015 Apr 20.
Article in English | MEDLINE | ID: mdl-25844512

ABSTRACT

Corrosiveness is one of the main drawbacks of using the iodide/triiodide redox couple in dye-sensitized solar cells (DSSCs). Alternative redox couples including transition metal complexes have been investigated where surprisingly high efficiencies for the conversion of solar to electrical energy have been achieved. In this paper, we examined the development of a DSSC using an electrolyte based on square pyramidal oxidovanadium(IV/V) complexes. The oxidovanadium(IV) complex (Ph4P)2[V(IV)O(hybeb)] was combined with its oxidized analogue (Ph4P)[V(V)O(hybeb)] {where hybeb(4-) is the tetradentate diamidodiphenolate ligand [1-(2-hydroxybenzamido)-2-(2-pyridinecarboxamido)benzenato}and applied as a redox couple in the electrolyte of DSSCs. The complexes exhibit large electron exchange and transfer rates, which are evident from electron paramagnetic resonance spectroscopy and electrochemistry, rendering the oxidovanadium(IV/V) compounds suitable for redox mediators in DSSCs. The very large self-exchange rate constant offered an insight into the mechanism of the exchange reaction most likely mediated through an outer-sphere exchange mechanism. The [V(IV)O(hybeb)](2-)/[V(V)O(hybeb)](-) redox potential and the energy of highest occupied molecular orbital (HOMO) of the sensitizing dye N719 and the HOMO of [V(IV)O(hybeb)](2-) were calculated by means of density functional theory electronic structure calculation methods. The complexes were applied as a new redox mediator in DSSCs, while the cell performance was studied in terms of the concentration of the reduced and oxidized form of the complexes. These studies were performed with the commercial Ru-based sensitizer N719 absorbed on a TiO2 semiconducting film in the DSSC. Maximum energy conversion efficiencies of 2% at simulated solar light (AM 1.5; 1000 W m(-2)) with an open circuit voltage of 660 mV, a short-circuit current of 5.2 mA cm(-2), and a fill factor of 0.58 were recorded without the presence of any additives in the electrolyte.


Subject(s)
Coloring Agents/chemistry , Coordination Complexes/chemistry , Quantum Theory , Solar Energy , Vanadates/chemistry , Coordination Complexes/chemical synthesis , Molecular Structure , Oxidation-Reduction
19.
Inorg Chem ; 54(12): 5813-26, 2015 Jun 15.
Article in English | MEDLINE | ID: mdl-26039441

ABSTRACT

Alkaline earth (group 2) metal ion organic frameworks (AEMOFs) represent an important subcategory of MOFs with interesting structures and physical properties. Five MOFs, namely, [Mg2(H2dhtp)2(µ-H2O)(NMP)4] (AEMOF-2), [Mg2(H2dhtp)1.5(DMAc)4]Cl·DMAc (AEMOF-3), [Ca(H2dhtp)(DMAc)2] (AEMOF-4), [Sr3(H2dhtp)3(DMAc)6]·H2O (AEMOF-5), and [Ba(H2dhtp)(DMAc)] (AEMOF-6) (H4dhtp = 2,5-dihydroxy-terepthalic acid; DMAc = N,N-dimethylacetamide; NMP = N-methylpyrrolidone), are presented herein. The reported MOFs display structural variety with diverse topologies and new structural features. Interestingly, AEMOF-6 is the first example of a Ba(2+)-H2dhtp(2-) MOF, and AEMOF-5 is only the second known Sr(2+)-H2dhtp(2-) MOF. Detailed photoluminescence studies revealed alkaline earth metal ion-dependent fluorescence properties of the materials, with the heavier alkaline earth metal ions exhibiting red-shifted emission with respect to the lighter ions at room temperature. A bathochromic shift of the emission was observed for the MOFs (mostly for AEMOF-3 and AEMOF-4) at 77 K as a result of excited state proton transfer (ESIPT), which involves an intramolecular proton transfer from a hydroxyl to an adjacent carboxylic group of the H2dhtp(2-) ligand. Remarkably, AEMOF-6 displays rare yellow fluorescence at room temperature, which is attractive for solid state lighting applications. To probe whether the alkaline earth metal ions are responsible for the unusual luminescence properties of the reported MOFs, the potential energy surfaces (PESs) of the ground, S0, and lowest energy excited singlet, S1, states of model complexes along the intramolecular proton transfer coordinate were calculated by DFT and TD-DFT methods.

20.
Angew Chem Int Ed Engl ; 54(5): 1651-6, 2015 Jan 26.
Article in English | MEDLINE | ID: mdl-25487062

ABSTRACT

The development of efficient sensors for the determination of the water content in organic solvents is highly desirable for a number of chemical industries. Presented herein is a Mg(2+) metal-organic framework (MOF), which exhibits the remarkable capability to rapidly detect traces of water (0.05-5 % v/v) in various organic solvents through an unusual turn-on luminescence sensing mechanism. The extraordinary sensitivity and fast response of this MOF for water, and its reusability make it one of the most powerful water sensors known.


Subject(s)
Organometallic Compounds/chemistry , Solvents/chemistry , Spectrometry, Fluorescence , Water/analysis , Coordination Complexes/chemistry , Metals, Alkaline Earth/chemistry , Thermodynamics
SELECTION OF CITATIONS
SEARCH DETAIL