Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 46
Filter
1.
Nat Immunol ; 15(11): 1064-9, 2014 Nov.
Article in English | MEDLINE | ID: mdl-25240383

ABSTRACT

It remains largely unclear how antigen-presenting cells (APCs) encounter effector or memory T cells efficiently in the periphery. Here we used a mouse contact hypersensitivity (CHS) model to show that upon epicutaneous antigen challenge, dendritic cells (DCs) formed clusters with effector T cells in dermal perivascular areas to promote in situ proliferation and activation of skin T cells in a manner dependent on antigen and the integrin LFA-1. We found that DCs accumulated in perivascular areas and that DC clustering was abrogated by depletion of macrophages. Treatment with interleukin 1α (IL-1α) induced production of the chemokine CXCL2 by dermal macrophages, and DC clustering was suppressed by blockade of either the receptor for IL-1 (IL-1R) or the receptor for CXCL2 (CXCR2). Our findings suggest that the dermal leukocyte cluster is an essential structure for elicitating acquired cutaneous immunity.


Subject(s)
CD4-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/immunology , Dendritic Cells/immunology , Dermatitis, Contact/immunology , Skin/immunology , Animals , CD11c Antigen/genetics , Cell Proliferation , Chemokine CXCL2/biosynthesis , Female , Immunologic Memory/immunology , Interleukin-1alpha/pharmacology , Lymphocyte Activation/immunology , Lymphocyte Function-Associated Antigen-1/immunology , Macrophages/cytology , Macrophages/immunology , Mice , Mice, Inbred C57BL , Mice, Knockout , Models, Animal , Neutrophils/immunology , Receptors, Interleukin-1/antagonists & inhibitors , Receptors, Interleukin-8B/antagonists & inhibitors , Skin/pathology
2.
Int J Mol Sci ; 25(3)2024 Feb 02.
Article in English | MEDLINE | ID: mdl-38339119

ABSTRACT

Prostaglandins are bioactive compounds, and the activation of their receptors affects the expression of clock genes. However, the prostaglandin F receptor (Ptgfr) has no known relationship with biological rhythms. Here, we first measured the locomotor period lengths of Ptgfr-KO (B6.129-Ptgfrtm1Sna) mice and found that they were longer under constant dark conditions (DD) than those of wild-type (C57BL/6J) mice. We then investigated the clock gene patterns within the suprachiasmatic nucleus in Ptgfr-KO mice under DD and observed a decrease in the expression of the clock gene cryptochrome 1 (Cry1), which is related to the circadian cycle. Moreover, the expression of Cry1, Cry2, and Period2 (Per2) mRNA were significantly altered in the mouse liver in Ptgfr-KO mice under DD. In the wild-type mouse, the plasma prostaglandin F2α (PGF2α) levels showed a circadian rhythm under a 12 h cycle of light-dark conditions. In addition, in vitro experiments showed that the addition of PTGFR agonists altered the amplitude of Per2::luc activity, and this alteration differed with the timing of the agonist addition. These results lead us to hypothesize that the plasma rhythm of PGF2α is important for driving clock genes, thus suggesting the involvement of PGF2α- and Ptgfr-targeting drugs in the biological clock cycle.


Subject(s)
Circadian Rhythm , Dinoprost , Mice , Animals , Dinoprost/metabolism , Mice, Inbred C57BL , Circadian Rhythm/genetics , Biological Clocks , Suprachiasmatic Nucleus/metabolism , Gene Expression , Cryptochromes/genetics , Cryptochromes/metabolism
3.
Biochem Biophys Res Commun ; 589: 139-146, 2022 01 22.
Article in English | MEDLINE | ID: mdl-34920379

ABSTRACT

The ω3 polyunsaturated fatty acids (PUFAs) are known to have beneficial effects on health and diseases, and hence their intake is encouraged. However, it remains unknown as to how ω3 PUFAs affect female reproduction processes, in which ω6 PUFA-derived prostaglandin (PG) E2 and PGF2α play crucial roles. We therefore compared female reproductive performance between ω3 PUFA-biased linseed oil diet-fed (Lin) mice and ω6 PUFA-biased soybean oil diet-fed (Soy) mice. In Lin mice, the uterine levels of arachidonic acid (AA) and eicosapentaenoic acid (EPA) were 0.42 fold and 16 fold of those in Soy mice, respectively, with the EPA/AA ratio being 0.7 (vs 0.02 in Soy mice). Lin mice showed no alterations in any of the fertility indexes, including luteolysis and parturition. The uterine PG synthesis profiles of Lin mice were similar to those of Soy mice, but the levels of PGF2α and PGE2 were 50% of those in Soy mice, as a result of the increased EPA/AA ratio. PGF3α and PGE3 were undetectable in the uterine tissues of Soy and Lin mice. Interestingly, in Lin mice, 'luteolytic' PGF2α synthesis was considerably maintained even in the ω6 PUFA-reduced condition. These results suggest the existence of an elaborate mechanism securing PGF2α synthesis to a level that is sufficient for triggering luteolysis and parturition, even under ω6 PUFA-reduced conditions.


Subject(s)
Diet , Fatty Acids, Omega-3/pharmacology , Luteolysis/physiology , Parturition/physiology , Prostaglandins/biosynthesis , Uterus/metabolism , Animals , Female , Luteolysis/drug effects , Mice, Inbred C57BL , Parturition/drug effects , Placenta/drug effects , Placenta/metabolism , Pregnancy , Reproduction/drug effects , Uterus/drug effects
4.
EMBO J ; 36(14): 2146-2160, 2017 07 14.
Article in English | MEDLINE | ID: mdl-28588064

ABSTRACT

During pregnancy, up-regulation of heparin-binding (HB-) EGF and cyclooxygenase-2 (COX-2) in the uterine epithelium contributes to decidualization, a series of uterine morphological changes required for placental formation and fetal development. Here, we report a key role for the lipid mediator lysophosphatidic acid (LPA) in decidualization, acting through its G-protein-coupled receptor LPA3 in the uterine epithelium. Knockout of Lpar3 or inhibition of the LPA-producing enzyme autotaxin (ATX) in pregnant mice leads to HB-EGF and COX-2 down-regulation near embryos and attenuates decidual reactions. Conversely, selective pharmacological activation of LPA3 induces decidualization via up-regulation of HB-EGF and COX-2. ATX and its substrate lysophosphatidylcholine can be detected in the uterine epithelium and in pre-implantation-stage embryos, respectively. Our results indicate that ATX-LPA-LPA3 signaling at the embryo-epithelial boundary induces decidualization via the canonical HB-EGF and COX-2 pathways.


Subject(s)
Decidua/growth & development , Embryo, Mammalian/physiology , Lysophospholipids/metabolism , Phosphoric Diester Hydrolases/metabolism , Receptors, Lysophosphatidic Acid/metabolism , Signal Transduction , Uterus/physiology , Animals , Cyclooxygenase 2/metabolism , Embryonic Development , Female , Gene Knockout Techniques , Heparin-binding EGF-like Growth Factor/metabolism , Mice , Mice, Knockout , Receptors, Lysophosphatidic Acid/deficiency
5.
J Allergy Clin Immunol ; 144(4): 1036-1049, 2019 10.
Article in English | MEDLINE | ID: mdl-31378305

ABSTRACT

BACKGROUND: Psoriasis is a chronic inflammatory skin disease characterized by IL-17-mediated immune responses. p38 is known to be highly activated in the psoriatic epidermis; however, whether p38 is involved in the development of psoriasis is unclear. OBJECTIVE: We sought to demonstrate that activation of p38 mitogen-activated protein kinase is sufficient to induce psoriatic inflammation in mice and that cutaneous p38 activities are the topical therapeutic targets for psoriasis. METHODS: A p38 activator, anisomycin, was applied daily to murine skin. Transcriptomic analyses were performed to evaluate the similarities of the skin responses to those in human psoriasis and the existing animal model. BIRB796, a small-molecule inhibitor targeting p38 activities, was applied to the murine psoriatic models topically or to human psoriatic skin specimens ex vivo. RESULTS: Topical treatment with anisomycin induced key signatures in psoriasis, such as epidermal thickening, neutrophil infiltration, and gene expression of Il1a, Il1b, Il6, Il24, Cxcl1, Il23a, and Il17a, in treated murine skin. These responses were fully abrogated by topical treatment with BIRB796, and were reduced in IL-17A-deficient mice. Transcriptomic analyses demonstrated the similarities of anisomycin-induced dermatitis to human psoriasis and imiquimod-induced murine psoriatic dermatitis. Furthermore, BIRB796 targeting of p38 activities reduced expression of psoriasis-related genes in both human keratinocytes stimulated with recombinant IL-17A in vitro and psoriatic skin specimens ex vivo. CONCLUSION: Therefore our findings suggest that cutaneous p38 activation can be a key event in patients with psoriasis and a potential topical therapeutic target of a small molecule.


Subject(s)
Dermatitis/metabolism , Psoriasis/metabolism , p38 Mitogen-Activated Protein Kinases/metabolism , Adult , Aged , Animals , Anisomycin/pharmacology , Dermatitis/immunology , Enzyme Activation/drug effects , Enzyme Activation/physiology , Enzyme Activators/pharmacology , Female , Humans , Male , Mice , Mice, Inbred C57BL , Middle Aged , Psoriasis/immunology , Skin/metabolism , Young Adult , p38 Mitogen-Activated Protein Kinases/immunology
6.
Biochim Biophys Acta ; 1851(4): 414-21, 2015 Apr.
Article in English | MEDLINE | ID: mdl-25038274

ABSTRACT

Prostaglandin E2 (PGE2) is one of the most typical lipid mediators produced from arachidonic acid (AA) by cyclooxygenase (COX) as the rate-limiting enzyme, and acts on four kinds of receptor subtypes (EP1-EP4) to elicit its diverse actions including pyrexia, pain sensation, and inflammation. Recently, the molecular mechanisms underlying the PGE2 actions mediated by each EP subtype have been elucidated by studies using mice deficient in each EP subtype as well as several compounds highly selective to each EP subtype, and their findings now enable us to discuss how PGE2 initiates and exacerbates inflammation at the molecular level. Here, we review the recent advances in PGE2 receptor research by focusing on the activation of mast cells via the EP3 receptor and the control of helper T cells via the EP2/4 receptor, which are the molecular mechanisms involved in PGE2-induced inflammation that had been unknown for many years. We also discuss the roles of PGE2 in acute inflammation and inflammatory disorders, and the usefulness of anti-inflammatory therapies that target EP receptors. This article is part of a Special Issue entitled "Oxygenated metabolism of PUFA: analysis and biological relevance".


Subject(s)
Dinoprostone/metabolism , Inflammation/metabolism , Receptors, Prostaglandin E/metabolism , Signal Transduction , Animals , Anti-Inflammatory Agents/pharmacology , Dinoprostone/chemistry , Dinoprostone/immunology , Drug Design , Humans , Inflammation/immunology , Inflammation/prevention & control , Lymphocyte Activation , Mast Cells/immunology , Mast Cells/metabolism , Molecular Structure , Molecular Targeted Therapy , Receptors, Prostaglandin E/antagonists & inhibitors , Receptors, Prostaglandin E/immunology , Receptors, Prostaglandin E, EP2 Subtype/metabolism , Receptors, Prostaglandin E, EP3 Subtype/metabolism , Receptors, Prostaglandin E, EP4 Subtype/metabolism , Structure-Activity Relationship , T-Lymphocytes, Helper-Inducer/immunology , T-Lymphocytes, Helper-Inducer/metabolism
7.
J Immunol ; 192(3): 1130-7, 2014 Feb 01.
Article in English | MEDLINE | ID: mdl-24342806

ABSTRACT

PGE2 has long been known as a potentiator of acute inflammation, but its mechanisms of action still remain to be defined. In this study, we employed inflammatory swelling induced in mice by arachidonate and PGE2 as models and dissected the role and mechanisms of action of each EP receptor at the molecular level. Arachidonate- or PGE2-induced vascular permeability was significantly reduced in EP3-deficient mice. Intriguingly, the PGE2-induced response was suppressed by histamine H1 antagonist treatment, histidine decarboxylase deficiency, and mast cell deficiency. The impaired PGE2-induced response in mast cell-deficient mice was rescued upon reconstitution with wild-type mast cells but not with EP3-deficient mast cells. Although the number of mast cells, protease activity, and histamine contents in ear tissues in EP3-deficient mice were comparable to those in wild-type mice, the histamine contents in ear tissues were attenuated upon PGE2 treatment in wild-type but not in EP3-deficient mice. Consistently, PGE2-EP3 signaling elicited histamine release in mouse peritoneal and bone marrow-derived mast cells, and it exerted degranulation and IL-6 production in a manner sensitive to pertussis toxin and a PI3K inhibitor and dependent on extracellular Ca(2+) ions. These results demonstrate that PGE2 triggers mast cell activation via an EP3-Gi/o-Ca(2+) influx/PI3K pathway, and this mechanism underlies PGE2-induced vascular permeability and consequent edema formation.


Subject(s)
Dinoprostone/physiology , Edema/physiopathology , Inflammation/physiopathology , Mast Cells/physiology , Receptors, Prostaglandin E, EP3 Subtype/physiology , Animals , Arachidonic Acid/toxicity , Calcium/physiology , Capillary Permeability/drug effects , Capillary Permeability/physiology , Cell Degranulation , Edema/etiology , Histamine Release/drug effects , Inflammation/complications , Interleukin-6/physiology , Mast Cells/drug effects , Mast Cells/enzymology , Mice , Mice, Inbred C57BL , Neutrophil Activation , Peroxidase/analysis , Phosphatidylinositol 3-Kinases/physiology , Phosphoinositide-3 Kinase Inhibitors , Receptors, Prostaglandin E, EP3 Subtype/deficiency , Signal Transduction/drug effects , Signal Transduction/physiology , Specific Pathogen-Free Organisms
8.
Eur J Immunol ; 44(1): 204-14, 2014 Jan.
Article in English | MEDLINE | ID: mdl-24002822

ABSTRACT

Mast cells are the major sources of histamine, which is released in response to immunological stimulations. The synthesis of histamine is catalyzed by histidine decarboxylase (HDC). Previous studies have shown that Hdc(-/-) mast cells exhibit aberrant granule morphology with severely decreased granule content. Here, we investigated whether the histamine synthesized in mast cells regulates the granule maturation of murine mast cells. Several genes, including those encoding granule proteases and enzymes involved in heparin biosynthesis, were downregulated in Hdc(-/-) peritoneal mast cells. Impaired granule maturation was also found in Hdc(-/-) BM-derived cultured mast cells when they were cocultured with fibroblasts in the presence of c-kit ligand. Exogenous application of histamine and several H4 receptor agonists restored the granule maturation of Hdc(-/-) cultured mast cells. However, the maturation of granules was largely normal in Hrh4(-/-) peritoneal mast cells. Depletion of cellular histamine with tetrabenazine, an inhibitor of vesicular monoamine transporter-2, did not affect granule maturation. In vivo experiments with mast cell deficient Kit(W) /Kit(W-v) mice indicated that the expression of the Hdc gene in mast cells is required for granule maturation. These results suggest that histamine promotes granule maturation in mast cells and acts as an proinflammatory mediator.


Subject(s)
Cytoplasmic Granules/metabolism , Fibroblasts/immunology , Histamine/biosynthesis , Mast Cells/immunology , Secretory Vesicles/metabolism , Animals , Cell Degranulation , Cells, Cultured , Chymases/metabolism , Coculture Techniques , Female , Histidine Decarboxylase/genetics , Histidine Decarboxylase/metabolism , Male , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , Mice, Knockout , Receptors, G-Protein-Coupled/metabolism , Receptors, Histamine/metabolism , Receptors, Histamine H4 , Tryptases/metabolism
9.
Biochem Biophys Res Commun ; 461(4): 612-7, 2015 Jun 12.
Article in English | MEDLINE | ID: mdl-25912136

ABSTRACT

We examined the pancreatic function of p13 encoded by 1110001J03Rik, whose expression is decreased in pancreatic islets in high-fat-fed diabetic mice, by generating transgenic mice overexpressing p13 (p13-Tg) in pancreatic ß-cells. p13-Tg mice showed normal basal glucose metabolism; however, under high-fat feeding, these animals showed augmented glucose-induced first-phase and total insulin secretion, improved glucose disposal, greater islet area and increased mitotic insulin-positive cells. In addition, high-fat diet-induced 4-hydroxynonenal immunoreactivity, a reliable marker and causative agent of lipid peroxidative stress, was significantly decreased in p13-Tg mouse islets. These results indicate that p13 is a novel pancreatic factor exerting multiple beneficial effects against type 2 diabetes.


Subject(s)
Diabetes Mellitus, Type 2/metabolism , Diet, High-Fat , Insulin-Secreting Cells/metabolism , Obesity/metabolism , Animals , Mice , Mice, Transgenic , Up-Regulation
10.
Biochem Biophys Res Commun ; 436(4): 685-90, 2013 Jul 12.
Article in English | MEDLINE | ID: mdl-23770421

ABSTRACT

Prostanoids comprising prostaglandins (PGs) and thromboxanes have been shown to play physiological and pathological roles in zebrafish. However, the molecular basis of zebrafish prostanoid receptors has not been characterized to date. Here, we demonstrate that there exist at least six 'relaxant' (Gs-coupled) prostanoid receptors in zebrafish; one PGI2 receptor IP and five PGE2 receptors comprising two EP2 (EP2a and EP2b), and three EP4 receptors (EP4a, EP4b and EP4c). In contrast, we failed to find a zebrafish PGD2 receptor with any structure and/or character similarities to the mammalian DP1 receptor. [(3)H]iloprost, a stable IP radioligand, specifically bound to the membrane of cells expressing zebrafish IP with a Kd of 42nM, and [(3)H]PGE2 specifically bound to the membranes of cells expressing zebrafish EP2a, EP2b, EP4a, EP4b and EP4c with a Kd of 6.9, 6.0, 1.4, 3.3 and 1.2nM, respectively. Upon agonist stimulation, the 'relaxant' prostanoid receptors showed intracellular cAMP accumulation. The responsiveness of these zebrafish receptors to subtype-specific agonists correlated with their structural conservation to the corresponding receptor in mammals. RT-PCR analysis revealed that the six zebrafish prostanoid receptors show unique tissue distribution patterns; each receptor gene may hence be under unique transcriptional regulation. This work provides further insights into the diverse functions of prostanoids in zebrafish.


Subject(s)
Receptors, Prostaglandin/metabolism , Animals , COS Cells , Chlorocebus aethiops , Gene Expression Profiling , Ligands , Polymerase Chain Reaction , Protein Binding , Signal Transduction , Zebrafish
11.
Biochem Biophys Res Commun ; 438(2): 353-8, 2013 Aug 23.
Article in English | MEDLINE | ID: mdl-23892039

ABSTRACT

Prostanoids comprising prostaglandins (PGs) and thromboxanes (TXs) have been shown to play physiological and pathological roles in zebrafish. However, the molecular basis of zebrafish prostanoid receptors has not been established. Here, we demonstrate that there exist at least five 'contractile' (Ca(2+)-mobilizing) and one 'inhibitory' (Gi-coupled) prostanoid receptors in zebrafish; five 'contractile' receptors consisting of two PGE2 receptors (EP1a and EP1b), two PGF2α receptors (FP1 and FP2), and one TXA2 receptor TP, and one 'inhibitory' receptor, the PGE2 receptor EP3. [(3)H]PGE2 specifically bound to the membranes of cells expressing zebrafish EP1a, EP1b and EP3 with a Kd of 4.8, 1.8 and 13.6nM, respectively, and [(3)H]PGF2α specifically bound to the membranes of cells expressing zebrafish FP1 and FP2, with a Kd of 6.5 and 1.6nM, respectively. U-46619, a stable agonist for human and mouse TP receptors, significantly increased the specific binding of [(35)S]GTPγS to membranes expressing the zebrafish TP receptor. Upon agonist stimulation, all six receptors showed an increase in intracellular Ca(2+) levels, although the increase was very weak in EP1b, and pertussis toxin abolished only the EP3-mediated response. Zebrafish EP3 receptor also suppressed forskolin-induced cAMP formation in a pertussis toxin-sensitive manner. In association with the low structural conservation with mammalian receptors, most agonists and antagonists specific for mammalian EP1, EP3 and TP failed to work on each corresponding zebrafish receptor. This work provides further insights into the diverse prostanoid actions mediated by their receptors in zebrafish.


Subject(s)
Receptors, Prostaglandin/metabolism , Zebrafish Proteins/metabolism , Zebrafish/physiology , Animals , COS Cells , Calcium/metabolism , Chlorocebus aethiops , Cloning, Molecular , Colforsin/pharmacology , Gene Expression Profiling , Gene Expression Regulation , Humans , Mice , Muscle Contraction/drug effects , Pertussis Toxin/chemistry , Phylogeny , Receptors, G-Protein-Coupled/metabolism , Receptors, Prostaglandin E, EP3 Subtype/metabolism , Receptors, Thromboxane/metabolism , Signal Transduction , Tissue Distribution
12.
Nat Commun ; 14(1): 550, 2023 02 08.
Article in English | MEDLINE | ID: mdl-36754961

ABSTRACT

Myofibroblasts cause tissue fibrosis by producing extracellular matrix proteins, such as collagens. Humoral factors like TGF-ß, and matrix stiffness are important for collagen production by myofibroblasts. However, the molecular mechanisms regulating their ability to produce collagen remain poorly characterised. Here, we show that vestigial-like family member 3 (VGLL3) is specifically expressed in myofibroblasts from mouse and human fibrotic hearts and promotes collagen production. Further, substrate stiffness triggers VGLL3 translocation into the nucleus through the integrin ß1-Rho-actin pathway. In the nucleus, VGLL3 undergoes liquid-liquid phase separation via its low-complexity domain and is incorporated into non-paraspeckle NONO condensates containing EWS RNA-binding protein 1 (EWSR1). VGLL3 binds EWSR1 and suppresses miR-29b, which targets collagen mRNA. Consistently, cardiac fibrosis after myocardial infarction is significantly attenuated in Vgll3-deficient mice, with increased miR-29b expression. Overall, our results reveal an unrecognised VGLL3-mediated pathway that controls myofibroblasts' collagen production, representing a novel therapeutic target for tissue fibrosis.


Subject(s)
MicroRNAs , Myocardium , Humans , Mice , Animals , Myocardium/metabolism , Transforming Growth Factor beta1/metabolism , Fibrosis , Collagen/metabolism , Myofibroblasts/metabolism , Transcription Factors/metabolism , MicroRNAs/genetics , MicroRNAs/metabolism , Fibroblasts/metabolism , Cells, Cultured
13.
J Biol Chem ; 286(1): 420-8, 2011 Jan 07.
Article in English | MEDLINE | ID: mdl-21044961

ABSTRACT

The importance of microRNAs (miRNAs) in human malignancies has been well recognized. Here, we report that the expression of microRNA-210 (miR-210) is down-regulated in human esophageal squamous cell carcinoma and derived cell lines. Marked decreases in the level of miR-210 were observed especially in poorly differentiated carcinomas. We found that miR-210 inhibits cancer cell survival and proliferation by inducing cell death and cell cycle arrest in G(1)/G(0) and G(2)/M. Finally, we identified fibroblast growth factor receptor-like 1 (FGFRL1) as a target of miR-210 in esophageal squamous cell carcinoma and demonstrated that FGFRL1 accelerates cancer cell proliferation by preventing cell cycle arrest in G(1)/G(0). Taken together, our findings show an important role for miR-210 as a tumor-suppressive microRNA with effects on cancer cell proliferation.


Subject(s)
Carcinoma, Squamous Cell/pathology , Esophageal Neoplasms/pathology , MicroRNAs/genetics , MicroRNAs/metabolism , Receptor, Fibroblast Growth Factor, Type 5/genetics , 3' Untranslated Regions/genetics , Base Sequence , Carcinoma, Squamous Cell/genetics , Cell Cycle/genetics , Cell Death/genetics , Cell Differentiation/genetics , Cell Line, Tumor , Cell Proliferation , Down-Regulation/genetics , Esophageal Neoplasms/genetics , Gene Expression Regulation, Neoplastic/genetics , Genes, Neoplasm/genetics , Humans
14.
J Med Chem ; 65(4): 3460-3472, 2022 02 24.
Article in English | MEDLINE | ID: mdl-35113551

ABSTRACT

Three new diterpenes, stellejasmins A (1) and B (2) and 12-O-benzoylphorbol-13-heptanoate (3), were isolated from the roots of Stellera chamaejasme L. The structures of 1-3 were elucidated by extensive NMR and mass spectroscopic analyses. Compounds 1 and 2 are the first derivatives containing a hydroxy group at C-2 in the family of daphnane and tigliane diterpenes. The presence of a chlorine atom in 1 is unique in the plant metabolite. Compound 3 has an odd-number acyl group, which is biosynthetically notable. Human immunodeficiency virus (HIV) LTR-driven transcription activity was tested with 1-3 and 17 known diterpenes isolated from S. chamaejasme L. and Wikstroemia retusa A.Gray. Among these, gnidimacrin (4), stelleralide A (5), and wikstroelide A (20) were highly potent, with EC50 values of 0.14, 0.33, and 0.39 nM, respectively. The structure-activity relationship (SAR) was investigated using 20 natural and eight synthetic diterpenes. This is the first SAR study on natural daphnane and tigliane diterpenes.


Subject(s)
Anti-HIV Agents/chemical synthesis , Anti-HIV Agents/pharmacology , Diterpenes/chemical synthesis , Diterpenes/pharmacology , HIV/drug effects , Phorbols/chemistry , Virus Latency/drug effects , Diterpenes/chemistry , Models, Molecular , Molecular Docking Simulation , Phorbols/pharmacology , Plant Extracts/chemistry , Plant Extracts/pharmacology , Plant Roots/chemistry , Structure-Activity Relationship , Thymelaeaceae/chemistry , Wikstroemia/chemistry
15.
Commun Biol ; 5(1): 1215, 2022 11 10.
Article in English | MEDLINE | ID: mdl-36357668

ABSTRACT

In vertebrates, female receptivity to male courtship is highly dependent on ovarian secretion of estrogens and prostaglandins. We recently identified female-specific neurons in the medaka (Oryzias latipes) preoptic area that express Npba, a neuropeptide mediating female sexual receptivity, in response to ovarian estrogens. Here we show by transcriptomic analysis that these neurons express a multitude of neuropeptides, in addition to Npba, in an ovarian-dependent manner, and we thus termed them female-specific, sex steroid-responsive peptidergic (FeSP) neurons. Our results further revealed that FeSP neurons express a prostaglandin E2 receptor gene, ptger4b, in an ovarian estrogen-dependent manner. Behavioral and physiological examination of ptger4b-deficient female medaka found that they exhibit increased sexual receptivity while retaining normal ovarian function and that their FeSP neurons have reduced firing activity and impaired neuropeptide release. Collectively, this work provides evidence that prostaglandin E2/Ptger4b signaling mediates the estrogenic regulation of FeSP neuron activity and female sexual receptivity.


Subject(s)
Neuropeptides , Oryzias , Animals , Female , Male , Oryzias/genetics , Receptors, Prostaglandin E , Estrogens , Neurons , Neuropeptides/genetics , Prostaglandins
16.
J Hum Genet ; 56(4): 270-6, 2011 Apr.
Article in English | MEDLINE | ID: mdl-21289630

ABSTRACT

MicroRNAs (miRNAs) are endogenous non-coding RNAs that function as negative regulators of gene expression. Alterations in miRNA expression have been shown to affect tumor growth and response to chemotherapy. In this study, we explored the possible role of miRNAs in cisplatin resistance in esophageal squamous cell carcinoma (ESCC). First we assessed the sensitivity of nine human ESCC cell lines (KYSE series) to cisplatin using an in vitro cell viability assay, and then we compared the miRNA profiles of the cisplatin-sensitive and -resistant cell lines by miRNA microarray analysis. The two groups showed markedly different miRNA expression profiles, and 10 miRNAs were found to be regulated differentially between the two groups. When miR-141, which was the most highly expressed miRNA in the cisplatin-resistant cell lines, was expressed ectopically in the cisplatin-sensitive cell lines, cell viability after cisplatin treatment was increased significantly. Furthermore, we found that miR-141 directly targeted the 3'-untranslated region of YAP1, which is known to have a crucial role in apoptosis induced by DNA-damaging agents, and thus downregulated YAP1 expression. Our study highlights an important regulatory role for miR-141 in the development of cisplatin resistance in ESCC.


Subject(s)
Adaptor Proteins, Signal Transducing/metabolism , Carcinoma, Squamous Cell/metabolism , Drug Resistance, Neoplasm/genetics , Esophageal Neoplasms/metabolism , Gene Expression Regulation, Neoplastic/genetics , MicroRNAs/metabolism , Phosphoproteins/metabolism , Apoptosis/drug effects , Blotting, Western , Cell Line, Tumor , Cell Survival , Cisplatin/metabolism , Cisplatin/pharmacology , DNA Primers/genetics , Humans , MicroRNAs/genetics , Microarray Analysis , Reverse Transcriptase Polymerase Chain Reaction , Transcription Factors , Trypan Blue , YAP-Signaling Proteins
17.
Nucleic Acids Res ; 37(11): 3821-7, 2009 Jun.
Article in English | MEDLINE | ID: mdl-19386621

ABSTRACT

MicroRNAs are small noncoding RNA species, some of which are playing important roles in cell differentiation. However, the level of participations of microRNAs in epithelial cell differentiation is largely unknown. Here, utilizing an epithelial differentiation model with T84 cells, we demonstrate that miR-338-3p and miR-451 contribute to the formation of epithelial basolateral polarity by facilitating translocalization of beta1 integrin to the basolateral membrane. Among 250 microRNAs screened in this study, the expression levels of four microRNAs (miR-33a, 210, 338-3p and 451) were significantly elevated in the differentiated stage of T84 cells, when epithelial cell polarity was established. To investigate the involvement of these microRNAs in terms of epithelial cell polarity, we executed loss-of- and gain-of-function analyses of these microRNAs. The blockade of endogenous miR-338-3p or miR-451 via each microRNA-specific antisense oligonucleotides inhibited the translocalization of beta1 integrin to the basolateral membrane, whereas inhibition of miR-210 or miR-33a had no effect on it. On the other hand, simultaneous transfection of synthetic miR-338-3p and miR-451 accelerated the translocalization of beta1 integrin to the basolateral membrane, although the introduction of individual synthetic microRNAs exhibited no effect. Therefore, we concluded that both miR-338-3p and miR-451 are necessary for the development of epithelial cell polarity.


Subject(s)
Cell Polarity/genetics , Epithelial Cells/metabolism , MicroRNAs/physiology , Cell Differentiation , Cell Line, Tumor , Epithelial Cells/cytology , Gene Expression Regulation , Humans , MicroRNAs/antagonists & inhibitors
18.
Cell Mol Immunol ; 18(6): 1437-1449, 2021 06.
Article in English | MEDLINE | ID: mdl-33037399

ABSTRACT

Leukotriene B4 (LTB4) receptor 1 (BLT1) is a chemotactic G protein-coupled receptor expressed by leukocytes, such as granulocytes, macrophages, and activated T cells. Although there is growing evidence that BLT1 plays crucial roles in immune responses, its role in dendritic cells remains largely unknown. Here, we identified novel DC subsets defined by the expression of BLT1, namely, BLT1hi and BLT1lo DCs. We also found that BLT1hi and BLT1lo DCs differentially migrated toward LTB4 and CCL21, a lymph node-homing chemoattractant, respectively. By generating LTB4-producing enzyme LTA4H knockout mice and CD11c promoter-driven Cre recombinase-expressing BLT1 conditional knockout (BLT1 cKO) mice, we showed that the migration of BLT1hi DCs exacerbated allergic contact dermatitis. Comprehensive transcriptome analysis revealed that BLT1hi DCs preferentially induced Th1 differentiation by upregulating IL-12p35 expression, whereas BLT1lo DCs accelerated T cell proliferation by producing IL-2. Collectively, the data reveal an unexpected role for BLT1 as a novel DC subset marker and provide novel insights into the role of the LTB4-BLT1 axis in the spatiotemporal regulation of distinct DC subsets.


Subject(s)
Dendritic Cells/metabolism , Hypersensitivity/pathology , Inflammation/pathology , Receptors, Leukotriene B4/metabolism , Skin/pathology , Animals , Biomarkers/metabolism , Cell Differentiation/drug effects , Cell Membrane/drug effects , Cell Membrane/metabolism , Cell Movement/drug effects , Cell Proliferation/drug effects , Chemokine CCL21/pharmacology , Dendritic Cells/drug effects , Dermatitis, Atopic/complications , Dermatitis, Atopic/immunology , Dermatitis, Atopic/pathology , Hypersensitivity/complications , Hypersensitivity/immunology , Inflammation/complications , Inflammation/immunology , Interleukin-12/biosynthesis , Leukotriene B4/metabolism , Lymph Nodes/drug effects , Mice, Inbred C57BL , Th1 Cells/drug effects , Th1 Cells/immunology , Transcriptome/genetics
19.
Cell Rep ; 33(2): 108265, 2020 10 13.
Article in English | MEDLINE | ID: mdl-33053354

ABSTRACT

Lipolysis, the breakdown of triglyceride storage in white adipose tissue, supplies fatty acids to other tissues as a fuel under fasting conditions. In morbid obesity, fibrosis limits adipocyte expandability, resulting in enforced lipolysis, ectopic fat distribution, and ultimately insulin resistance. Although basal levels of lipolysis persist even after feeding, the regulatory mechanisms of basal lipolysis remain unclear. Here, we show the important role of adipocyte prostaglandin (PG) E2-EP4 receptor signaling in controlling basal lipolysis, fat distribution, and collagen deposition during feeding-fasting cycles. The PGE2-synthesis pathway in adipocytes, which is coupled with lipolysis, is activated by insulin during feeding. By regulating the lipolytic key players, the PGE2-EP4 pathway sustains basal lipolysis as a negative feedback loop of insulin action, and perturbation of this process leads to "metabolically healthy obesity." The potential role of the human EP4 receptor in lipid regulation was also suggested through genotype-phenotype association analyses.


Subject(s)
Adipose Tissue, White/metabolism , Adipose Tissue, White/pathology , Adiposity , Dinoprostone/metabolism , Insulin Resistance , Lipolysis , Receptors, Prostaglandin E, EP4 Subtype/metabolism , Adipocytes/metabolism , Adipose Tissue, White/ultrastructure , Adult , Animals , Cell Line , Collagen/metabolism , Diet , Fibrosis , Humans , Insulin/metabolism , Lipase/metabolism , Liver/metabolism , Male , Mice, Inbred C57BL , Mice, Knockout , Polymorphism, Single Nucleotide/genetics , Receptors, Prostaglandin E, EP4 Subtype/genetics , Signal Transduction , Triglycerides/metabolism
20.
Kidney360 ; 1(8): 781-796, 2020 08 27.
Article in English | MEDLINE | ID: mdl-35372949

ABSTRACT

Background: Renal proximal tubulopathy plays a crucial role in kidney disease, but its molecular mechanism is incompletely understood. Because proximal tubular cells consume a lot of energy during reabsorption, the relationship between fatty acids (FAs) and proximal tubulopathy has been attracting attention. The purpose of this study is to investigate the association between change in renal FA composition and tubulopathy. Methods: Mice with cisplatin-induced nephrotoxicity were used as a model of AKI and 5/6-nephrectomized mice were used as a model of CKD. Renal FA composition in mice was measured by GC-MS. Human tubular epithelial cells (HK-2 cells) were used for in vitro studies. Results: In kidneys of AKI mice, increased stearic acid (C18:0) and decreased palmitic acid (C16:0) were observed, accompanied by increased expression of the long-chain FA elongase Elovl6. Similar results were also obtained in CKD mice. We show that C18:0 has higher tubular toxicity than C16:0 via induction of ER stress. Using adenovirus-expressing Elovl6 or siRNA for Elovl6 in HK-2 cells, we demonstrated that increased Elovl6 expression contributes to tubulopathy via increasing C18:0. Elovl6 knockout suppressed the increased serum creatinine levels, renal ER stress, and inflammation that would usually result after 5/6 nephrectomy. Advanced oxidation protein products (AOPPs), specifically an oxidized albumin, was found to induce Elovl6 via the mTORC1/SREBP1 pathway. Conclusions: AOPPs may contribute to renal tubulopathy via perturbation of renal FAs through induction of Elovl6. The perturbation of renal FAs induced by the AOPPs-Elovl6 system could be a potential target for the treatment of tubulopathy.


Subject(s)
Advanced Oxidation Protein Products , Fatty Acids , Acetyltransferases/genetics , Advanced Oxidation Protein Products/metabolism , Animals , Fatty Acid Elongases , Fatty Acids/metabolism , Kidney/metabolism , Mice
SELECTION OF CITATIONS
SEARCH DETAIL