Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 45
Filter
1.
Nature ; 550(7677): 534-538, 2017 10 26.
Article in English | MEDLINE | ID: mdl-29045385

ABSTRACT

The ubiquitin system regulates essential cellular processes in eukaryotes. Ubiquitin is ligated to substrate proteins as monomers or chains and the topology of ubiquitin modifications regulates substrate interactions with specific proteins. Thus ubiquitination directs a variety of substrate fates including proteasomal degradation. Deubiquitinase enzymes cleave ubiquitin from substrates and are implicated in disease; for example, ubiquitin-specific protease-7 (USP7) regulates stability of the p53 tumour suppressor and other proteins critical for tumour cell survival. However, developing selective deubiquitinase inhibitors has been challenging and no co-crystal structures have been solved with small-molecule inhibitors. Here, using nuclear magnetic resonance-based screening and structure-based design, we describe the development of selective USP7 inhibitors GNE-6640 and GNE-6776. These compounds induce tumour cell death and enhance cytotoxicity with chemotherapeutic agents and targeted compounds, including PIM kinase inhibitors. Structural studies reveal that GNE-6640 and GNE-6776 non-covalently target USP7 12 Å distant from the catalytic cysteine. The compounds attenuate ubiquitin binding and thus inhibit USP7 deubiquitinase activity. GNE-6640 and GNE-6776 interact with acidic residues that mediate hydrogen-bond interactions with the ubiquitin Lys48 side chain, suggesting that USP7 preferentially interacts with and cleaves ubiquitin moieties that have free Lys48 side chains. We investigated this idea by engineering di-ubiquitin chains containing differential proximal and distal isotopic labels and measuring USP7 binding by nuclear magnetic resonance. This preferential binding protracted the depolymerization kinetics of Lys48-linked ubiquitin chains relative to Lys63-linked chains. In summary, engineering compounds that inhibit USP7 activity by attenuating ubiquitin binding suggests opportunities for developing other deubiquitinase inhibitors and may be a strategy more broadly applicable to inhibiting proteins that require ubiquitin binding for full functional activity.


Subject(s)
Aminopyridines/chemistry , Aminopyridines/pharmacology , Indazoles/chemistry , Indazoles/pharmacology , Phenols/chemistry , Phenols/pharmacology , Pyridines/chemistry , Pyridines/pharmacology , Ubiquitin-Specific Peptidase 7/antagonists & inhibitors , Ubiquitin/metabolism , Animals , Binding, Competitive , Cell Line, Tumor , Drug Synergism , Female , Humans , Mice , Mice, SCID , Models, Molecular , Neoplasms/drug therapy , Neoplasms/enzymology , Neoplasms/pathology , Protein Binding , Proto-Oncogene Proteins c-mdm2/metabolism , Proto-Oncogene Proteins c-pim-1/antagonists & inhibitors , Substrate Specificity , Tumor Suppressor Protein p53/deficiency , Tumor Suppressor Protein p53/genetics , Tumor Suppressor Protein p53/metabolism , Ubiquitin/chemistry , Ubiquitin-Specific Peptidase 7/chemistry , Ubiquitin-Specific Peptidase 7/deficiency , Ubiquitin-Specific Peptidase 7/metabolism
2.
J Comput Aided Mol Des ; 33(3): 307-330, 2019 03.
Article in English | MEDLINE | ID: mdl-30756207

ABSTRACT

Targeting the interaction with or displacement of the 'right' water molecule can significantly increase inhibitor potency in structure-guided drug design. Multiple computational approaches exist to predict which waters should be targeted for displacement to achieve the largest gain in potency. However, the relative success of different methods remains underexplored. Here, we present a comparison of the ability of five water prediction programs (3D-RISM, SZMAP, WaterFLAP, WaterRank, and WaterMap) to predict crystallographic water locations, calculate their binding free energies, and to relate differences in these energies to observed changes in potency. The structural cohort included nine Bruton's Tyrosine Kinase (BTK) structures, and nine bromodomain structures. Each program accurately predicted the locations of most crystallographic water molecules. However, the predicted binding free energies correlated poorly with the observed changes in inhibitor potency when solvent atoms were displaced by chemical changes in closely related compounds.


Subject(s)
Agammaglobulinaemia Tyrosine Kinase/chemistry , Computer Simulation , Models, Molecular , Protein Kinase Inhibitors/chemistry , Water/chemistry , Crystallography, X-Ray , Ligands , Protein Binding , Protein Domains , Software , Solvents/chemistry , Structure-Activity Relationship , Thermodynamics
3.
Bioorg Med Chem Lett ; 28(1): 15-23, 2018 01 01.
Article in English | MEDLINE | ID: mdl-29169673

ABSTRACT

A novel, potent, and orally bioavailable inhibitor of the bromodomain of CBP, compound 35 (GNE-207), has been identified through SAR investigations focused on optimizing al bicyclic heteroarene to replace the aniline present in the published GNE-272 series. Compound 35 has excellent CBP potency (CBP IC50 = 1 nM, MYC EC50 = 18 nM), a selectively index of >2500-fold against BRD4(1), and exhibits a good pharmacokinetic profile.


Subject(s)
Biphenyl Compounds/chemistry , Drug Design , p300-CBP Transcription Factors/antagonists & inhibitors , Animals , Binding Sites , Biphenyl Compounds/chemical synthesis , Biphenyl Compounds/metabolism , Cell Cycle Proteins , Crystallography, X-Ray , Half-Life , Humans , Hydrogen Bonding , Inhibitory Concentration 50 , Mice , Microsomes, Liver/metabolism , Molecular Dynamics Simulation , Nuclear Proteins/antagonists & inhibitors , Nuclear Proteins/metabolism , Protein Structure, Tertiary , Rats , Structure-Activity Relationship , Transcription Factors/antagonists & inhibitors , Transcription Factors/metabolism , p300-CBP Transcription Factors/metabolism
4.
J Biol Chem ; 291(25): 13014-27, 2016 Jun 17.
Article in English | MEDLINE | ID: mdl-27056325

ABSTRACT

Covalent modification of histones is a fundamental mechanism of regulated gene expression in eukaryotes, and interpretation of histone modifications is an essential feature of epigenetic control. Bromodomains are specialized binding modules that interact with acetylated histones, linking chromatin recognition to gene transcription. Because of their ability to function in a domain-specific fashion, selective disruption of bromodomain:acetylated histone interactions with chemical probes serves as a powerful means for understanding biological processes regulated by these chromatin adaptors. Here we describe the discovery and characterization of potent and selective small molecule inhibitors for the bromodomains of CREBBP/EP300 that engage their target in cellular assays. We use these tools to demonstrate a critical role for CREBBP/EP300 bromodomains in regulatory T cell biology. Because regulatory T cell recruitment to tumors is a major mechanism of immune evasion by cancer cells, our data highlight the importance of CREBBP/EP300 bromodomain inhibition as a novel, small molecule-based approach for cancer immunotherapy.


Subject(s)
CREB-Binding Protein/antagonists & inhibitors , E1A-Associated p300 Protein/antagonists & inhibitors , Small Molecule Libraries/chemistry , Small Molecule Libraries/pharmacology , T-Lymphocytes, Regulatory/drug effects , Acetylation/drug effects , CREB-Binding Protein/chemistry , CREB-Binding Protein/metabolism , Cell Differentiation/drug effects , Cell Line , Cells, Cultured , E1A-Associated p300 Protein/chemistry , E1A-Associated p300 Protein/metabolism , Forkhead Transcription Factors/metabolism , Histones/metabolism , Humans , Molecular Docking Simulation , Protein Structure, Tertiary/drug effects , T-Lymphocytes, Regulatory/cytology , T-Lymphocytes, Regulatory/metabolism , Transcriptome/drug effects
5.
Bioorg Med Chem Lett ; 27(18): 4370-4376, 2017 09 15.
Article in English | MEDLINE | ID: mdl-28830649

ABSTRACT

Herein we report identification of an imidazopyridine class of potent and selective TYK2 inhibitors, exemplified by prototype 6, through constraint of the rotatable amide bond connecting the pyridine and aryl rings of compound 1. Further optimization led to generation of compound 30 that potently inhibits the TYK2 enzyme and the IL-23 pathway in cells, exhibits selectivity against cellular JAK2 activity, and has good pharmacokinetic properties. In mice, compound 30 demonstrated dose-dependent reduction of IL-17 production in a PK/PD model as well as in an imiquimod-induced psoriasis model. In this efficacy model, the IL-17 decrease was accompanied by a reduction of ear thickness indicating the potential of TYK2 inhibition as a therapeutic approach for psoriasis patients.


Subject(s)
Imidazoles/pharmacology , Protein Kinase Inhibitors/pharmacology , Pyridines/pharmacology , TYK2 Kinase/antagonists & inhibitors , Dose-Response Relationship, Drug , Humans , Imidazoles/chemical synthesis , Imidazoles/chemistry , Molecular Structure , Protein Kinase Inhibitors/chemical synthesis , Protein Kinase Inhibitors/chemistry , Pyridines/chemical synthesis , Pyridines/chemistry , Structure-Activity Relationship , TYK2 Kinase/metabolism
6.
Bioorg Med Chem Lett ; 27(15): 3534-3541, 2017 08 01.
Article in English | MEDLINE | ID: mdl-28606761

ABSTRACT

Bromodomain-containing protein 9 (BRD9), an epigenetic "reader" of acetylated lysines on post-translationally modified histone proteins, is upregulated in multiple cancer cell lines. To assess the functional role of BRD9 in cancer cell lines, we identified a small-molecule inhibitor of the BRD9 bromodomain. Starting from a pyrrolopyridone lead, we used structure-based drug design to identify a potent and highly selective in vitro tool compound 11, (GNE-375). While this compound showed minimal effects in cell viability or gene expression assays, it showed remarkable potency in preventing the emergence of a drug tolerant population in EGFR mutant PC9 cells treated with EGFR inhibitors. Such tolerance has been linked to an altered epigenetic state, and 11 decreased BRD9 binding to chromatin, and this was associated with decreased expression of ALDH1A1, a gene previously shown to be important in drug tolerance. BRD9 inhibitors may therefore show utility in preventing epigenetically-defined drug resistance.


Subject(s)
Drug Resistance/drug effects , Epigenesis, Genetic/drug effects , Small Molecule Libraries/chemistry , Small Molecule Libraries/pharmacology , Transcription Factors/antagonists & inhibitors , Aldehyde Dehydrogenase/genetics , Aldehyde Dehydrogenase 1 Family , Cell Line, Tumor , Drug Design , Drug Resistance, Neoplasm/drug effects , Humans , Molecular Docking Simulation , Pyridones/chemistry , Pyridones/pharmacology , Retinal Dehydrogenase , Transcription Factors/metabolism
7.
J Comput Aided Mol Des ; 31(3): 287-291, 2017 03.
Article in English | MEDLINE | ID: mdl-27796615

ABSTRACT

Computational chemistry/informatics scientists and software engineers in Genentech Small Molecule Drug Discovery collaborate with experimental scientists in a therapeutic project-centric environment. Our mission is to enable and improve pre-clinical drug discovery design and decisions. Our goal is to deliver timely data, analysis, and modeling to our therapeutic project teams using best-in-class software tools. We describe our strategy, the organization of our group, and our approaches to reach this goal. We conclude with a summary of the interdisciplinary skills required for computational scientists and recommendations for their training.


Subject(s)
Computer-Aided Design , Drug Design , Models, Molecular , Chemistry, Pharmaceutical , Computational Biology , Drug Discovery , Molecular Dynamics Simulation , Software
8.
Bioorg Med Chem Lett ; 25(22): 5258-64, 2015 Nov 15.
Article in English | MEDLINE | ID: mdl-26459208

ABSTRACT

Pim kinase inhibitors are promising cancer therapeutics. Pim-2, among the three Pim isoforms, plays a critical role in multiple myeloma yet inhibition of Pim-2 is challenging due to its high affinity for ATP. A co-crystal structure of a screening hit 1 bound to Pim-1 kinase revealed the key binding interactions of its indazole core within the ATP binding site. Screening of analogous core fragments afforded 1H-pyrazolo[3,4-c]pyridine (6-azaindazole) as a core for the development of pan-Pim inhibitors. Fragment and structure based drug design led to identification of the series with picomolar biochemical potency against all three Pim isoforms. Desirable cellular potency was also achieved.


Subject(s)
Antineoplastic Agents/pharmacology , Proto-Oncogene Proteins c-pim-1/antagonists & inhibitors , Pyrazoles/pharmacology , Pyridines/pharmacology , Animals , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Cell Line, Tumor , Crystallography, X-Ray , Humans , Indazoles/chemical synthesis , Indazoles/chemistry , Indazoles/pharmacology , Mice , Models, Molecular , Proto-Oncogene Proteins c-pim-1/chemistry , Pyrazoles/chemical synthesis , Pyrazoles/chemistry , Pyridines/chemical synthesis , Pyridines/chemistry , Structure-Activity Relationship
9.
J Comput Aided Mol Des ; 29(6): 511-23, 2015 Jun.
Article in English | MEDLINE | ID: mdl-25921252

ABSTRACT

Structure- and property-based drug design is an integral part of modern drug discovery, enabling the design of compounds aimed at improving potency and selectivity. However, building molecules using desktop modeling tools can easily lead to poor designs that appear to form many favorable interactions with the protein's active site. Although a proposed molecule looks good on screen and appears to fit into the protein site X-ray crystal structure or pharmacophore model, doing so might require a high-energy small molecule conformation, which would likely be inactive. To help scientists make better design decisions, we have built integrated, easy-to-use, interactive software tools to perform docking experiments, de novo design, shape and pharmacophore based database searches, small molecule conformational analysis and molecular property calculations. Using a combination of these tools helps scientists in assessing the likelihood that a designed molecule will be active and have desirable drug metabolism and pharmacokinetic properties. Small molecule discovery success requires project teams to rapidly design and synthesize potent molecules with good ADME properties. Empowering scientists to evaluate ideas quickly and make better design decisions with easy-to-access and easy-to-understand software on their desktop is now a key part of our discovery process.


Subject(s)
Drug Design , Molecular Docking Simulation , Quantitative Structure-Activity Relationship , Software , Computer-Aided Design , Molecular Conformation , TYK2 Kinase/antagonists & inhibitors , TYK2 Kinase/chemistry
10.
Bioorg Med Chem Lett ; 23(11): 3149-53, 2013 Jun 01.
Article in English | MEDLINE | ID: mdl-23623490

ABSTRACT

Pim kinases are promising targets for the development of cancer therapeutics. Among the three Pim isoforms, Pim-2 is particularly important in multiple myeloma, yet is the most difficult to inhibit due to its high affinity for ATP. We identified compound 1 via high throughput screening. Using property-based drug design and co-crystal structures with Pim-1 kinase to guide analog design, we were able to improve potency against all three Pim isoforms including a significant 10,000-fold gain against Pim-2. Compound 17 is a novel lead with low picomolar potency on all three Pim kinase isoforms.


Subject(s)
Drug Design , Protein Kinase Inhibitors/chemistry , Proto-Oncogene Proteins c-pim-1/antagonists & inhibitors , Pyrazoles/chemistry , Pyrimidines/chemistry , Animals , Binding Sites , Cell Line , Cell Survival/drug effects , Crystallography, X-Ray , Drug Evaluation, Preclinical , Humans , Kinetics , Mice , Protein Isoforms/antagonists & inhibitors , Protein Isoforms/metabolism , Protein Kinase Inhibitors/chemical synthesis , Protein Kinase Inhibitors/pharmacology , Protein Structure, Tertiary , Proto-Oncogene Proteins c-pim-1/metabolism , Pyrazoles/chemical synthesis , Pyrazoles/pharmacology , Pyrimidines/chemical synthesis , Pyrimidines/pharmacology , Structure-Activity Relationship
11.
Bioorg Med Chem Lett ; 23(3): 897-901, 2013 Feb 01.
Article in English | MEDLINE | ID: mdl-23265894

ABSTRACT

Substructural class effects surrounding replacement of a 'cis' N-methyl aniline amide within potent and selective thienobenzoxepin PI3-kinase inhibitors are disclosed. While a simple aryl to alkyl switch was not tolerated due to differences in preferred amide conformation, heterocyclic amide isosteres with maintained aryl substitution improved potency and metabolic stability at the cost of physical properties. These gains in potency allowed lipophilic deconstruction of the arene to simple branched alkyl substituents. As such, overall lipophilicity-neutral, MW decreases were realized relative to the aniline amide series. The improved properties for lead compound 21 resulted in high permeability, solubility and bioavailability.


Subject(s)
Benzoxepins/chemical synthesis , Enzyme Inhibitors/chemical synthesis , Phosphoinositide-3 Kinase Inhibitors , Amides/chemical synthesis , Amides/chemistry , Amides/pharmacology , Benzothiazoles/chemistry , Benzoxepins/chemistry , Benzoxepins/pharmacology , Binding Sites , Crystallography, X-Ray , Enzyme Activation/drug effects , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/pharmacology , Humans , Models, Molecular , Thiophenes/chemical synthesis , Thiophenes/chemistry , Thiophenes/pharmacology
13.
J Med Chem ; 65(16): 11177-11186, 2022 08 25.
Article in English | MEDLINE | ID: mdl-35930799

ABSTRACT

Bromodomains are acetyllysine recognition domains present in a variety of human proteins. Bromodomains also bind small molecules that compete with acetyllysine, and therefore bromodomains have been targets for drug discovery efforts. Highly potent and selective ligands with good cellular permeability have been proposed as chemical probes for use in exploring the functions of many of the bromodomain proteins. We report here the discovery of a class of such inhibitors targeting the family VIII bromodomains of SMARCA2 (BRM) and SMARCA4 (BRG1), and PBRM1 (polybromo-1) bromodomain 5. We propose one example from this series, GNE-064, as a chemical probe for the bromodomains SMARCA2, SMARCA4, and PBRM1(5) with the potential for in vivo use.


Subject(s)
DNA Helicases , Transcription Factors , DNA-Binding Proteins , Humans , Nuclear Proteins , Protein Domains
14.
Proteins ; 79(2): 393-401, 2011 Feb.
Article in English | MEDLINE | ID: mdl-21117080

ABSTRACT

Members of the JAK family of protein kinases mediate signal transduction from cytokine receptors to transcription factor activation. Over-stimulation of these pathways is causative in immune disorders like rheumatoid arthritis, psoriasis, lupus, and Crohn's disease. A search for selective inhibitors of a JAK kinase has led to our characterization of a previously unknown kinase conformation arising from presentation of Tyr962 of TYK2 to an inhibitory small molecule via an H-bonding interaction. A small minority of protein kinase domains has a Tyrosine residue in this position within the αC-ß4 loop, and it is the only amino acid commonly seen here with H-bonding potential. These discoveries will aid design of inhibitors that discriminate among the JAK family and more widely among protein kinases.


Subject(s)
TYK2 Kinase/chemistry , Catalytic Domain , Crystallography, X-Ray , Drug Design , Humans , Isoquinolines/chemistry , Models, Molecular , Mutation , Protein Binding , Protein Kinase Inhibitors/chemistry , Protein Structure, Tertiary , Quinolines/chemistry , Recombinant Proteins/antagonists & inhibitors , Recombinant Proteins/chemistry , TYK2 Kinase/antagonists & inhibitors , Thiophenes/chemistry
16.
Bioorg Med Chem Lett ; 20(7): 2229-33, 2010 Apr 01.
Article in English | MEDLINE | ID: mdl-20189383

ABSTRACT

A series of IAP antagonists based on thiazole or benzothiazole amide isosteres was designed and synthesized. These compounds were tested for binding to the XIAP-BIR3 and ML-IAP BIR using a fluorescence polarization assay. The most potent of these compounds, 19a and 33b, were found to have K(i)'s of 20-30 nM against ML-IAP and 50-60 nM against XIAP-BIR3.


Subject(s)
Amides/chemistry , Amides/pharmacology , Inhibitor of Apoptosis Proteins/antagonists & inhibitors , Peptides/chemistry , Thiazoles/chemistry , Thiazoles/pharmacology , Binding Sites , Biomimetics , Crystallography, X-Ray , Humans , Inhibitor of Apoptosis Proteins/metabolism , Models, Molecular , Peptides/metabolism
17.
Bioorg Med Chem Lett ; 20(8): 2408-11, 2010 Apr 15.
Article in English | MEDLINE | ID: mdl-20346656

ABSTRACT

Efforts to identify potent small molecule inhibitors of PI3 kinase and mTOR led to the discovery of the exceptionally potent 6-aryl morpholino thienopyrimidine 6. In an effort to reduce the melting point in analogs of 6, the thienopyrimidine was modified by the addition of a methyl group to disrupt planarity. This modification resulted in a general improvement in in vivo clearance. This discovery led to the identification of GNE-477 (8), a potent and efficacious dual PI3K/mTOR inhibitor.


Subject(s)
Enzyme Inhibitors/pharmacology , Intracellular Signaling Peptides and Proteins/antagonists & inhibitors , Phosphoinositide-3 Kinase Inhibitors , Protein Serine-Threonine Kinases/antagonists & inhibitors , Pyrimidines/pharmacology , Thiophenes/pharmacology , Animals , Dogs , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/pharmacokinetics , Female , Mice , Pyrimidines/chemistry , Rats , TOR Serine-Threonine Kinases , Thiophenes/chemistry
18.
Bioorg Med Chem Lett ; 20(20): 6048-51, 2010 Oct 15.
Article in English | MEDLINE | ID: mdl-20822905

ABSTRACT

Starting from HTS hit 1a, X-ray co-crystallization and molecular modeling were used to design potent and selective inhibitors of PI3-kinase. Bioavailablity in this series was improved through careful modulation of physicochemical properties. Compound 12 displayed in vivo knockdown of PI3K pharmacodynamic markers such as pAKT, pPRAS40, and pS6RP in a PC3 prostate cancer xenograft model.


Subject(s)
Phosphoinositide-3 Kinase Inhibitors , Protein Kinase Inhibitors/chemistry , Protein Kinase Inhibitors/pharmacology , Pyridines/chemistry , Pyridines/pharmacology , Pyrimidines/chemistry , Pyrimidines/pharmacology , Animals , Cell Line , Crystallography, X-Ray , Humans , Male , Mice , Models, Molecular , Phosphatidylinositol 3-Kinases/chemistry , Phosphatidylinositol 3-Kinases/metabolism , Prostatic Neoplasms/enzymology , Protein Kinase Inhibitors/pharmacokinetics , Pyrazoles/chemistry , Pyrazoles/pharmacokinetics , Pyrazoles/pharmacology , Pyridines/pharmacokinetics , Pyrimidines/pharmacokinetics , Rats , Solubility , Structure-Activity Relationship
19.
J Med Chem ; 62(4): 2140-2153, 2019 02 28.
Article in English | MEDLINE | ID: mdl-30715878

ABSTRACT

Pim kinases have been targets of interest for a number of therapeutic areas. Evidence of durable single-agent efficacy in human clinical trials validated Pim kinase inhibition as a promising therapeutic approach for multiple myeloma patients. Here, we report the compound optimization leading to GDC-0339 (16), a potent, orally bioavailable, and well tolerated pan-Pim kinase inhibitor that proved efficacious in RPMI8226 and MM.1S human multiple myeloma xenograft mouse models and has been evaluated as an early development candidate.


Subject(s)
Antineoplastic Agents/therapeutic use , Multiple Myeloma/drug therapy , Protein Kinase Inhibitors/therapeutic use , Proto-Oncogene Proteins c-pim-1/antagonists & inhibitors , Pyrazoles/therapeutic use , Animals , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/metabolism , Cell Line, Tumor , Dogs , Female , Humans , Macaca fascicularis , Madin Darby Canine Kidney Cells , Male , Mice, SCID , Molecular Structure , Protein Binding , Protein Kinase Inhibitors/chemical synthesis , Protein Kinase Inhibitors/metabolism , Proto-Oncogene Proteins c-pim-1/metabolism , Pyrazoles/chemical synthesis , Pyrazoles/metabolism , Rats, Sprague-Dawley , Structure-Activity Relationship , Xenograft Model Antitumor Assays
20.
J Med Chem ; 61(20): 9301-9315, 2018 10 25.
Article in English | MEDLINE | ID: mdl-30289257

ABSTRACT

The biological functions of the dual bromodomains of human transcription-initiation-factor TFIID subunit 1 (TAF1(1,2)) remain unknown, although TAF1 has been identified as a potential target for oncology research. Here, we describe the discovery of a potent and selective in vitro tool compound for TAF1(2), starting from a previously reported lead. A cocrystal structure of lead compound 2 bound to TAF1(2) enabled structure-based design and structure-activity-relationship studies that ultimately led to our in vitro tool compound, 27 (GNE-371). Compound 27 binds TAF1(2) with an IC50 of 10 nM while maintaining excellent selectivity over other bromodomain-family members. Compound 27 is also active in a cellular-TAF1(2) target-engagement assay (IC50 = 38 nM) and exhibits antiproliferative synergy with the BET inhibitor JQ1, suggesting engagement of endogenous TAF1 by 27 and further supporting the use of 27 in mechanistic and target-validation studies.


Subject(s)
Benzimidazoles/metabolism , Drug Design , Molecular Probes/metabolism , Transcription Factor TFIID/chemistry , Transcription Factor TFIID/metabolism , Humans , Models, Molecular , Protein Conformation , Protein Domains
SELECTION OF CITATIONS
SEARCH DETAIL