Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
1.
Mol Cell ; 67(4): 550-565.e5, 2017 Aug 17.
Article in English | MEDLINE | ID: mdl-28803780

ABSTRACT

DNA methylation is an essential epigenetic mark in mammals that has to be re-established after each round of DNA replication. The protein UHRF1 is essential for this process; it has been proposed that the protein targets newly replicated DNA by cooperatively binding hemi-methylated DNA and H3K9me2/3, but this model leaves a number of questions unanswered. Here, we present evidence for a direct recruitment of UHRF1 by the replication machinery via DNA ligase 1 (LIG1). A histone H3K9-like mimic within LIG1 is methylated by G9a and GLP and, compared with H3K9me2/3, more avidly binds UHRF1. Interaction with methylated LIG1 promotes the recruitment of UHRF1 to DNA replication sites and is required for DNA methylation maintenance. These results further elucidate the function of UHRF1, identify a non-histone target of G9a and GLP, and provide an example of a histone mimic that coordinates DNA replication and DNA methylation maintenance.


Subject(s)
CCAAT-Enhancer-Binding Proteins/metabolism , DNA Ligase ATP/metabolism , DNA Methylation , DNA Replication , DNA/biosynthesis , Epigenesis, Genetic , Histocompatibility Antigens/metabolism , Histone-Lysine N-Methyltransferase/metabolism , Protein Processing, Post-Translational , Animals , CCAAT-Enhancer-Binding Proteins/chemistry , CCAAT-Enhancer-Binding Proteins/genetics , DNA/genetics , DNA Ligase ATP/chemistry , DNA Ligase ATP/genetics , Embryonic Stem Cells/enzymology , HEK293 Cells , HeLa Cells , Histocompatibility Antigens/chemistry , Histocompatibility Antigens/genetics , Histone-Lysine N-Methyltransferase/chemistry , Histone-Lysine N-Methyltransferase/genetics , Histones/metabolism , Humans , Lysine , Methylation , Mice , Models, Molecular , Molecular Mimicry , Mutation , Protein Binding , Protein Conformation , Structure-Activity Relationship , Transfection , Tudor Domain , Ubiquitin-Protein Ligases
2.
EMBO Rep ; 20(12): e48297, 2019 12 05.
Article in English | MEDLINE | ID: mdl-31576654

ABSTRACT

Understanding of the appropriate regulation of enzymatic activities of histone-modifying enzymes remains poor. The lysine methyltransferase, SETDB1, is one of the enzymes responsible for the methylation of histone H3 at lysine 9 (H3K9) and plays a key role in H3K9 trimethylation-mediated silencing of genes and retrotransposons. Here, we reported that how SETDB1's enzymatic activities can be regulated by the nuclear protein, ATF7IP, a known binding partner of SETDB1. Mechanistically, ATF7IP mediates SETDB1 retention inside the nucleus, presumably by inhibiting its nuclear export by binding to the N-terminal region of SETDB1, which harbors the nuclear export signal motifs, and also by promoting its nuclear import. The nuclear localization of SETDB1 increases its ubiquitinated, enzymatically more active form. Our results provided an insight as to how ATF7IP can regulate the histone methyltransferase activity of SETDB1 accompanied by its nuclear translocation.


Subject(s)
Cell Nucleus/metabolism , Histone-Lysine N-Methyltransferase/metabolism , Repressor Proteins/metabolism , Ubiquitination , Active Transport, Cell Nucleus , Animals , Binding Sites , Cells, Cultured , HEK293 Cells , Histone-Lysine N-Methyltransferase/chemistry , Humans , Mice , Protein Binding , Repressor Proteins/chemistry
3.
Nucleic Acids Res ; 44(6): 2475-90, 2016 Apr 07.
Article in English | MEDLINE | ID: mdl-26926106

ABSTRACT

Emerging evidence has demonstrated that regulating the length of the poly(A) tail on an mRNA is an efficient means of controlling gene expression at the post-transcriptional level. In early development, transcription is silenced and gene expression is primarily regulated by cytoplasmic polyadenylation. In somatic cells, considerable progress has been made toward understanding the mechanisms of negative regulation by deadenylation. However, positive regulation through elongation of the poly(A) tail has not been widely studied due to the difficulty in distinguishing whether any observed increase in length is due to the synthesis of new mRNA, reduced deadenylation or cytoplasmic polyadenylation. Here, we overcame this barrier by developing a method for transcriptional pulse-chase analysis under conditions where deadenylases are suppressed. This strategy was used to show that a member of the Star family of RNA binding proteins, QKI, promotes polyadenylation when tethered to a reporter mRNA. Although multiple RNA binding proteins have been implicated in cytoplasmic polyadenylation during early development, previously only CPEB was known to function in this capacity in somatic cells. Importantly, we show that only the cytoplasmic isoform QKI-7 promotes poly(A) tail extension, and that it does so by recruiting the non-canonical poly(A) polymerase PAPD4 through its unique carboxyl-terminal region. We further show that QKI-7 specifically promotes polyadenylation and translation of three natural target mRNAs (hnRNPA1, p27(kip1)and ß-catenin) in a manner that is dependent on the QKI response element. An anti-mitogenic signal that induces cell cycle arrest at G1 phase elicits polyadenylation and translation of p27(kip1)mRNA via QKI and PAPD4. Taken together, our findings provide significant new insight into a general mechanism for positive regulation of gene expression by post-transcriptional polyadenylation in somatic cells.


Subject(s)
Poly A/genetics , Polyadenylation , RNA, Messenger/genetics , RNA-Binding Proteins/genetics , mRNA Cleavage and Polyadenylation Factors/genetics , Amino Acid Sequence , Cyclin-Dependent Kinase Inhibitor p27/genetics , Cyclin-Dependent Kinase Inhibitor p27/metabolism , G1 Phase Cell Cycle Checkpoints/genetics , HEK293 Cells , Heterogeneous Nuclear Ribonucleoprotein A1 , Heterogeneous-Nuclear Ribonucleoprotein Group A-B/genetics , Heterogeneous-Nuclear Ribonucleoprotein Group A-B/metabolism , Humans , Lipids/chemistry , Molecular Sequence Data , Plasmids/chemistry , Plasmids/metabolism , Poly A/metabolism , Polynucleotide Adenylyltransferase , Protein Interaction Domains and Motifs , RNA, Messenger/metabolism , RNA-Binding Proteins/metabolism , Response Elements , Signal Transduction , Transfection , beta Catenin/genetics , beta Catenin/metabolism , mRNA Cleavage and Polyadenylation Factors/chemistry , mRNA Cleavage and Polyadenylation Factors/metabolism
4.
Genes Cells ; 19(10): 766-77, 2014 Oct.
Article in English | MEDLINE | ID: mdl-25195573

ABSTRACT

Substantially high rate of glycolysis, known as the Warburg effect, is a well-known feature of cancers, and emerging evidence suggests that it supports cancerous proliferation/tumor growth. Phosphoglycerate mutase (PGAM), a glycolytic enzyme, is commonly up-regulated in several cancers, and recent reports show its involvement in the Warburg effect. Here, a comprehensive analysis shows that PGAM is acetylated at lysines 100/106/113/138 in its central region, and a member of the Sirtuin family (class III deacetylase), SIRT2, is responsible for its deacetylation. Over-expression of SIRT2 or mutations at the acetylatable lysines of PGAM attenuates cancer cell proliferation with a concomitant decrease in PGAM activity. We also report that the acetyltransferase PCAF (p300/CBP-associated factor) interacts with PGAM and acetylates its C-terminus, but not the central region. As prior evidence suggests that SIRT2 functions as a tumor suppressor, our results would provide support for the mechanistic basis of this activity.


Subject(s)
Phosphoglycerate Mutase/metabolism , Sirtuin 2/metabolism , p300-CBP Transcription Factors/metabolism , Acetylation , Animals , Arginine/metabolism , Cell Line, Tumor , Cell Proliferation , Down-Regulation , Humans , Lysine/metabolism , Mice , Mutation , Protein Structure, Tertiary , Sirtuin 2/genetics , Sirtuins/metabolism
5.
bioRxiv ; 2023 Apr 13.
Article in English | MEDLINE | ID: mdl-37090555

ABSTRACT

Ketone bodies are short chain fatty acids produced in the liver during periods of limited glucose availability that provide an alternative source of energy for the brain, heart, and skeletal muscle. Beyond this classical metabolic role, ß-hydroxybutyrate (BHB), is gaining recognition as a pleiotropic signaling molecule. Lysine ß-hydroxybutyrylation (Kbhb) is a newly discovered post-translational modification in which BHB is covalently attached to lysine ε-amino groups. This novel protein adduct is metabolically sensitive, dependent on BHB concentration, and found on proteins in multiple intracellular compartments, including the mitochondria and nucleus. Therefore, Kbhb is hypothesized to be an important component of ketone body-regulated physiology. Kbhb on histones is proposed to be an epigenetic regulator, which links metabolic alterations to gene expression. However, we found that the widely used antibody against the ß-hydroxybutyrylated lysine 9 on histone H3 (H3K9bhb) also recognizes other modification(s), which are increased by deacetylation inhibition and include likely acetylations. Therefore, caution must be used when interpreting gene regulation data acquired with the H3K9bhb antibody.

6.
iScience ; 26(7): 107235, 2023 Jul 21.
Article in English | MEDLINE | ID: mdl-37485368

ABSTRACT

Ketone bodies are short-chain fatty acids produced in the liver during periods of limited glucose availability that provide an alternative energy source for the brain, heart, and skeletal muscle. Beyond this metabolic role, ß-hydroxybutyrate (BHB), is gaining recognition as a signaling molecule. Lysine ß-hydroxybutyrylation (Kbhb) is a newly discovered post-translational modification in which BHB is covalently attached to lysine ε-amino groups. This protein adduct is metabolically sensitive, dependent on BHB concentration, and found on proteins in multiple intracellular compartments. Therefore, Kbhb is hypothesized to be an important component of ketone body-regulated physiology. Kbhb on histones is proposed to be an epigenetic regulator, which links metabolic alterations to gene expression. However, we found that the widely used antibody against ß-hydroxybutyrylated lysine 9 on histone H3 (H3K9bhb) also recognizes other modification(s) that likely include acetylation. Therefore, caution must be used when interpreting gene regulation data acquired with the H3K9bhb antibody.

7.
bioRxiv ; 2023 Nov 17.
Article in English | MEDLINE | ID: mdl-38014285

ABSTRACT

Starvation and low carbohydrate diets lead to the accumulation of the ketone body, ß-hydroxybutyrate (BHB), whose blood concentrations increase more than 10-fold into the millimolar range. In addition to providing a carbon source, BHB accumulation triggers lysine ß-hydroxybutyrylation (Kbhb) of proteins via unknown mechanisms. As with other lysine acylation events, Kbhb marks can be removed by histone deacetylases (HDACs). Here, we report that class I HDACs unexpectedly catalyze protein lysine modification with ß-hydroxybutyrate (BHB). Mutational analyses of the HDAC2 active site reveal a shared reliance on key amino acids for classical deacetylation and non-canonical HDAC-catalyzed ß-hydroxybutyrylation. Also consistent with reverse HDAC activity, Kbhb formation is driven by mass action and substrate availability. This reverse HDAC activity is not limited to BHB but also extends to multiple short-chain fatty acids. The reversible activity of class I HDACs described here represents a novel mechanism of PTM deposition relevant to metabolically-sensitive proteome modifications.

8.
Cell Metab ; 33(11): 2277-2287.e5, 2021 11 02.
Article in English | MEDLINE | ID: mdl-34473956

ABSTRACT

Aging impairs the integrated immunometabolic responses, which have evolved to maintain core body temperature in homeotherms to survive cold stress, infections, and dietary restriction. Adipose tissue inflammation regulates the thermogenic stress response, but how adipose tissue-resident cells instigate thermogenic failure in the aged are unknown. Here, we define alterations in the adipose-resident immune system and identify that type 2 innate lymphoid cells (ILC2s) are lost in aging. Restoration of ILC2 numbers in aged mice to levels seen in adults through IL-33 supplementation failed to rescue old mice from metabolic impairment and increased cold-induced lethality. Transcriptomic analyses revealed intrinsic defects in aged ILC2, and adoptive transfer of adult ILC2s are sufficient to protect old mice against cold. Thus, the functional defects in adipose ILC2s during aging drive thermogenic failure.


Subject(s)
Immunity, Innate , Interleukin-33 , Adipose Tissue , Aging , Animals , Lung , Lymphocytes , Mice , Mice, Inbred C57BL
9.
Epigenetics Chromatin ; 13(1): 52, 2020 11 30.
Article in English | MEDLINE | ID: mdl-33256805

ABSTRACT

BACKGROUND: The histone methyltransferase SETDB1 (also known as ESET) represses genes and various types of transposable elements, such as endogenous retroviruses (ERVs) and integrated exogenous retroviruses, through a deposition of trimethylation on lysine 9 of histone H3 (H3K9me3) in mouse embryonic stem cells (mESCs). ATF7IP (also known as MCAF1 or AM), a binding partner of SETDB1, regulates the nuclear localization and enzymatic activities of SETDB1 and plays a crucial role in SETDB1-mediated transcriptional silencing. In this study, we further dissected the ATF7IP function with its truncated mutants in Atf7ip knockout (KO) mESCs. RESULTS: We demonstrated that the SETDB1-interaction region within ATF7IP is essential for ATF7IP-dependent SETDB1 nuclear localization and silencing of both ERVs and integrated retroviral transgenes, whereas its C-terminal fibronectin type-III (FNIII) domain is dispensable for both these functions; rather, it has a role in efficient silencing mediated by the SETDB1 complex. Proteomic analysis identified a number of FNIII domain-interacting proteins, some of which have a consensus binding motif. We showed that one of the FNIII domain-binding proteins, ZMYM2, was involved in the efficient silencing of a transgene by ATF7IP. RNA-seq analysis of Atf7ip KO and WT or the FNIII domain mutant of ATF7IP-rescued Atf7ip KO mESCs showed that the FNIII domain mutant re-silenced most de-repressed SETDB1/ATF7IP-targeted ERVs compared to the WT. However, the silencing activity of the FNIII domain mutant was weaker than that of the ATF7IP WT, and some of the de-repressed germ cell-related genes in Atf7ip KO mESCs were not silenced by the FNIII domain mutant. Such germ cell-related genes are targeted and silenced by the MAX/MGA complex, and MGA was also identified as another potential binding molecule of the ATF7IP FNIII domain in the proteomic analysis. This suggests that the FNIII domain of ATF7IP acts as a binding hub of ATF7IP-interacting molecules possessing a specific interacting motif we named FAM and contributes to one layer of the SETDB1/ATF7IP complex-mediated silencing mechanisms. CONCLUSIONS: Our findings contributed to further understanding the function of ATF7IP in the SETDB1 complex, revealed the role of the FNIII domain of ATF7IP in transcriptional silencing, and suggested a potential underlying molecular mechanism for it.


Subject(s)
Fibronectin Type III Domain , Gene Silencing , Repressor Proteins/metabolism , Animals , Cells, Cultured , HEK293 Cells , Histone-Lysine N-Methyltransferase/metabolism , Humans , Mice , Mouse Embryonic Stem Cells/metabolism , Protein Binding , Repressor Proteins/chemistry , Repressor Proteins/genetics
10.
Structure ; 27(3): 485-496.e7, 2019 03 05.
Article in English | MEDLINE | ID: mdl-30639225

ABSTRACT

The protein UHRF1 is crucial for DNA methylation maintenance. The tandem Tudor domain (TTD) of UHRF1 binds histone H3K9me2/3 with micromolar affinity, as well as unmethylated linker regions within UHRF1 itself, causing auto-inhibition. Recently, we showed that a methylated histone-like region of DNA ligase 1 (LIG1K126me2/me3) binds the UHRF1 TTD with nanomolar affinity, permitting UHRF1 recruitment to chromatin. Here we report the crystal structure of the UHRF1 TTD bound to a LIG1K126me3 peptide. The data explain the basis for the high TTD-binding affinity of LIG1K126me3 and reveal that the interaction may be regulated by phosphorylation. Binding of LIG1K126me3 switches the overall structure of UHRF1 from a closed to a flexible conformation, suggesting that auto-inhibition is relieved. Our results provide structural insight into how UHRF1 performs its key function in epigenetic maintenance.


Subject(s)
CCAAT-Enhancer-Binding Proteins/chemistry , CCAAT-Enhancer-Binding Proteins/metabolism , DNA Ligase ATP/chemistry , DNA Ligase ATP/metabolism , Ubiquitin-Protein Ligases/chemistry , Ubiquitin-Protein Ligases/metabolism , Arginine/metabolism , Binding Sites , Crystallography, X-Ray , Epigenesis, Genetic , Gene Expression Regulation , Histones/metabolism , Humans , Methylation , Models, Molecular , Phosphorylation , Protein Conformation , Protein Domains
11.
Epigenetics Chromatin ; 11(1): 56, 2018 10 04.
Article in English | MEDLINE | ID: mdl-30286792

ABSTRACT

BACKGROUND: G9a and the related enzyme GLP were originally identified as histone lysine methyltransferases and then shown to also methylate several other non-histone proteins. RESULTS: Here, we performed a comprehensive screen to identify their substrates in mouse embryonic stem cells (mESCs). We identified 59 proteins, including histones and other known substrates. One of the identified substrates, activating transcriptional factor 7-interacting protein 1 (ATF7IP), is tri-methylated at a histone H3 lysine 9 (H3K9)-like mimic by the G9a/GLP complex, although this complex mainly introduces di-methylation on H3K9 and DNA ligase 1 (LIG1) K126 in cells. The catalytic domain of G9a showed a higher affinity for di-methylated lysine on ATF7IP than LIG1, which may create different methylation levels of different substrates in cells. Furthermore, we found that M-phase phosphoprotein 8 (MPP8), known as a H3K9me3-binding protein, recognizes methylated ATF7IP via its chromodomain. MPP8 is also a known component of the human silencing hub complex that mediates silencing of transgenes via SETDB1 recruitment, which is a binding partner of ATF7IP. Although the interaction between ATF7IP and SETDB1 does not depend on ATF7IP methylation, we found that induction of SETDB1/MPP8-mediated reporter-provirus silencing is delayed in mESCs expressing only an un-methylatable mutant of ATF7IP. CONCLUSIONS: Our findings provide new insights into the roles of lysine methylation in non-histone substrates which are targeted by the G9a/GLP complex and suggest a potential function of ATF7IP methylation in SETDB1/MPP8-mediated transgene silencing.


Subject(s)
Histone-Lysine N-Methyltransferase/metabolism , Phosphoproteins/metabolism , Protein Processing, Post-Translational , Repressor Proteins/metabolism , Animals , Cells, Cultured , Embryonic Stem Cells/metabolism , HEK293 Cells , Humans , Methylation , Mice
12.
Cell Rep ; 20(12): 2756-2765, 2017 Sep 19.
Article in English | MEDLINE | ID: mdl-28930672

ABSTRACT

At fertilization, the paternal genome undergoes extensive reprogramming through protamine-histone exchange and active DNA demethylation, but only a few maternal factors have been defined in these processes. We identified maternal Mettl23 as a protein arginine methyltransferase (PRMT), which most likely catalyzes the asymmetric dimethylation of histone H3R17 (H3R17me2a), as indicated by in vitro assays and treatment with TBBD, an H3R17 PRMT inhibitor. Maternal histone H3.3, which is essential for paternal nucleosomal assembly, is unable to be incorporated into the male pronucleus when it lacks R17me2a. Mettl23 interacts with Tet3, a 5mC-oxidizing enzyme responsible for active DNA demethylation, by binding to another maternal factor, GSE (gonad-specific expression). Depletion of Mettl23 from oocytes resulted in impaired accumulation of GSE, Tet3, and 5hmC in the male pronucleus, suggesting that Mettl23 may recruit GSE-Tet3 to chromatin. Our findings establish H3R17me2a and its catalyzing enzyme Mettl23 as key regulators of paternal genome reprogramming.


Subject(s)
Arginine/metabolism , Cellular Reprogramming , Genome , Histones/metabolism , Zygote/metabolism , 5-Methylcytosine/metabolism , Amino Acid Sequence , Animals , Chromosomal Proteins, Non-Histone , DNA Demethylation , DNA-Binding Proteins/metabolism , Dioxygenases , Embryonic Development , Male , Methylation , Methyltransferases/chemistry , Methyltransferases/metabolism , Mice , Oxidation-Reduction , Proteins/metabolism , Proto-Oncogene Proteins/metabolism , Repressor Proteins/metabolism
13.
J Cell Biol ; 204(5): 729-45, 2014 Mar 03.
Article in English | MEDLINE | ID: mdl-24567357

ABSTRACT

Despite the well-documented clinical significance of the Warburg effect, it remains unclear how the aggressive glycolytic rates of tumor cells might contribute to other hallmarks of cancer, such as bypass of senescence. Here, we report that, during oncogene- or DNA damage-induced senescence, Pak1-mediated phosphorylation of phosphoglycerate mutase (PGAM) predisposes the glycolytic enzyme to ubiquitin-mediated degradation. We identify Mdm2 as a direct binding partner and ubiquitin ligase for PGAM in cultured cells and in vitro. Mutations in PGAM and Mdm2 that abrogate ubiquitination of PGAM restored the proliferative potential of primary cells under stress conditions and promoted neoplastic transformation. We propose that Mdm2, a downstream effector of p53, attenuates the Warburg effect via ubiquitination and degradation of PGAM.


Subject(s)
Cellular Senescence , Phosphoglycerate Mutase/metabolism , Proto-Oncogene Proteins c-mdm2/physiology , Stress, Physiological , Animals , Cell Line , DNA Damage , Down-Regulation , HCT116 Cells , HEK293 Cells , HT29 Cells , HeLa Cells , Humans , Mice , Mice, Inbred C57BL , Mice, Nude , Phosphorylation , Proteolysis , Proto-Oncogene Proteins c-mdm2/metabolism , Ubiquitin/metabolism , p21-Activated Kinases/metabolism , p21-Activated Kinases/physiology
SELECTION OF CITATIONS
SEARCH DETAIL