Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 46
Filter
Add more filters

Country/Region as subject
Publication year range
1.
J Neurosci ; 43(42): 7028-7040, 2023 10 18.
Article in English | MEDLINE | ID: mdl-37669861

ABSTRACT

Parkinson's disease (PD) and progressive supranuclear palsy (PSP) both impair response inhibition, exacerbating impulsivity. Inhibitory control deficits vary across individuals and are linked with worse prognosis, and lack improvement on dopaminergic therapy. Motor and cognitive control are associated with noradrenergic innervation of the cortex, arising from the locus coeruleus (LC) noradrenergic system. Here we test the hypothesis that structural variation of the LC explains response inhibition deficits in PSP and PD. Twenty-four people with idiopathic PD, 14 with PSP-Richardson's syndrome, and 24 age- and sex-matched controls undertook a stop-signal task and ultrahigh field 7T magnetization-transfer-weighted imaging of the LC. Parameters of "race models" of go- versus stop-decisions were estimated using hierarchical Bayesian methods to quantify the cognitive processes of response inhibition. We tested the multivariate relationship between LC integrity and model parameters using partial least squares. Both disorders impaired response inhibition at the group level. PSP caused a distinct pattern of abnormalities in inhibitory control with a paradoxically reduced threshold for go responses, but longer nondecision times, and more lapses of attention. The variation in response inhibition correlated with the variability of LC integrity across participants in both clinical groups. Structural imaging of the LC, coupled with behavioral modeling in parkinsonian disorders, confirms that LC integrity is associated with response inhibition and LC degeneration contributes to neurobehavioral changes. The noradrenergic system is therefore a promising target to treat impulsivity in these conditions. The optimization of noradrenergic treatment is likely to benefit from stratification according to LC integrity.SIGNIFICANCE STATEMENT Response inhibition deficits contribute to clinical symptoms and poor outcomes in people with Parkinson's disease and progressive supranuclear palsy. We used cognitive modeling of performance of a response inhibition task to identify disease-specific mechanisms of abnormal inhibitory control. Response inhibition in both patient groups was associated with the integrity of the noradrenergic locus coeruleus, which we measured in vivo using ultra-high field MRI. We propose that the imaging biomarker of locus coeruleus integrity provides a trans-diagnostic tool to explain individual differences in response inhibition ability beyond the classic nosological borders and diagnostic criteria. Our data suggest a potential new stratified treatment approach for Parkinson's disease and progressive supranuclear palsy.


Subject(s)
Parkinson Disease , Parkinsonian Disorders , Supranuclear Palsy, Progressive , Humans , Supranuclear Palsy, Progressive/diagnostic imaging , Supranuclear Palsy, Progressive/psychology , Parkinson Disease/complications , Parkinson Disease/diagnostic imaging , Locus Coeruleus , Bayes Theorem
2.
Brain ; 146(8): 3221-3231, 2023 08 01.
Article in English | MEDLINE | ID: mdl-36883644

ABSTRACT

Frontotemporal dementia is clinically and neuropathologically heterogeneous, but neuroinflammation, atrophy and cognitive impairment occur in all of its principal syndromes. Across the clinical spectrum of frontotemporal dementia, we assess the predictive value of in vivo neuroimaging measures of microglial activation and grey-matter volume on the rate of future cognitive decline. We hypothesized that inflammation is detrimental to cognitive performance, in addition to the effect of atrophy. Thirty patients with a clinical diagnosis of frontotemporal dementia underwent a baseline multimodal imaging assessment, including [11C]PK11195 PET to index microglial activation and structural MRI to quantify grey-matter volume. Ten people had behavioural variant frontotemporal dementia, 10 had the semantic variant of primary progressive aphasia and 10 had the non-fluent agrammatic variant of primary progressive aphasia. Cognition was assessed at baseline and longitudinally with the revised Addenbrooke's Cognitive Examination, at an average of 7-month intervals (for an average of ∼2 years, up to ∼5 years). Regional [11C]PK11195 binding potential and grey-matter volume were determined, and these were averaged within four hypothesis-driven regions of interest: bilateral frontal and temporal lobes. Linear mixed-effect models were applied to the longitudinal cognitive test scores, with [11C]PK11195 binding potentials and grey-matter volumes as predictors of cognitive performance, with age, education and baseline cognitive performance as covariates. Faster cognitive decline was associated with reduced baseline grey-matter volume and increased microglial activation in frontal regions, bilaterally. In frontal regions, microglial activation and grey-matter volume were negatively correlated, but provided independent information, with inflammation the stronger predictor of the rate of cognitive decline. When clinical diagnosis was included as a factor in the models, a significant predictive effect was found for [11C]PK11195 BPND in the left frontal lobe (-0.70, P = 0.01), but not for grey-matter volumes (P > 0.05), suggesting that inflammation severity in this region relates to cognitive decline regardless of clinical variant. The main results were validated by two-step prediction frequentist and Bayesian estimation of correlations, showing significant associations between the estimated rate of cognitive change (slope) and baseline microglial activation in the frontal lobe. These findings support preclinical models in which neuroinflammation (by microglial activation) accelerates the neurodegenerative disease trajectory. We highlight the potential for immunomodulatory treatment strategies in frontotemporal dementia, in which measures of microglial activation may also improve stratification for clinical trials.


Subject(s)
Aphasia, Primary Progressive , Cognitive Dysfunction , Frontotemporal Dementia , Neurodegenerative Diseases , Pick Disease of the Brain , Humans , Frontotemporal Dementia/metabolism , Neuroinflammatory Diseases , Neurodegenerative Diseases/pathology , Microglia/metabolism , Bayes Theorem , Frontal Lobe/pathology , Pick Disease of the Brain/pathology , Cognitive Dysfunction/metabolism , Magnetic Resonance Imaging/methods , Inflammation/pathology , Atrophy/pathology , Aphasia, Primary Progressive/pathology
3.
J Neurosci ; 42(16): 3484-3493, 2022 04 20.
Article in English | MEDLINE | ID: mdl-35277392

ABSTRACT

Response inhibition is a core executive function enabling adaptive behavior in dynamic environments. Human and animal models indicate that inhibitory control and control networks are modulated by noradrenaline, arising from the locus coeruleus. The integrity (i.e., cellular density) of the locus coeruleus noradrenergic system can be estimated from magnetization transfer (MT)-sensitive magnetic resonance imaging (MRI), in view of neuromelanin present in noradrenergic neurons of older adults. Noradrenergic psychopharmacological studies indicate noradrenergic modulation of prefrontal and frontostriatal stopping-circuits in association with behavioral change. Here, we test the noradrenergic hypothesis of inhibitory control, in healthy adults. We predicted that locus coeruleus integrity is associated with age-adjusted variance in response inhibition, mediated by changes in connectivity between frontal inhibitory control regions. In a preregistered analysis, we used MT MRI images from N = 63 healthy humans aged above 50 years (of either sex) who performed a Stop-Signal Task (SST), with atlas-based measurement of locus coeruleus contrast. We confirm that better response inhibition is correlated with locus coeruleus integrity and stronger connectivity between presupplementary motor area (preSMA) and right inferior frontal gyrus (rIFG), but not volumes of the prefrontal cortical regions. We confirmed a significant role of prefrontal connectivity in mediating the effect of individual differences in the locus coeruleus on behavior, where this effect was moderated by age, over and above adjustment for the mean effects of age. Our results support the hypothesis that in normal populations, as in clinical settings, the locus coeruleus noradrenergic system regulates inhibitory control.SIGNIFICANCE STATEMENT We show that the integrity of the locus coeruleus, the principal source of cortical noradrenaline, is related to the efficiency of response inhibition in healthy older adults. This effect is in part mediated by its effect on functional connectivity in a prefrontal cortical stopping-network. The behavioral effect, and its mediation by connectivity, are moderated by age. This supports the psychopharmacological and genetic evidence for the noradrenergic regulation of behavioral control, in a population-based normative cohort. Noradrenergic treatment strategies may be effective to improve behavioral control in impulsive clinical populations, but age, and locus coeruleus integrity, are likely to be important stratification factors.


Subject(s)
Locus Coeruleus , Motor Cortex , Aged , Animals , Humans , Locus Coeruleus/diagnostic imaging , Locus Coeruleus/physiology , Magnetic Resonance Imaging/methods , Motor Cortex/physiology , Norepinephrine/physiology , Prefrontal Cortex/diagnostic imaging , Prefrontal Cortex/physiology
4.
Neuroimage ; 270: 119982, 2023 04 15.
Article in English | MEDLINE | ID: mdl-36848967

ABSTRACT

Working memory is critical to higher-order executive processes and declines throughout the adult lifespan. However, our understanding of the neural mechanisms underlying this decline is limited. Recent work suggests that functional connectivity between frontal control and posterior visual regions may be critical, but examinations of age differences therein have been limited to a small set of brain regions and extreme group designs (i.e., comparing young and older adults). In this study, we build on previous research by using a lifespan cohort and a whole-brain approach to investigate working memory load-modulated functional connectivity in relation to age and performance. The article reports on analysis of the Cambridge center for Ageing and Neuroscience (Cam-CAN) data. Participants from a population-based lifespan cohort (N = 101, age 23-86) performed a visual short-term memory task during functional magnetic resonance imaging. Visual short-term memory was measured with a delayed recall task for visual motion with three different loads. Whole-brain load-modulated functional connectivity was estimated using psychophysiological interactions in a hundred regions of interest, sorted into seven networks (Schaefer et al., 2018, Yeo et al., 2011). Results showed that load-modulated functional connectivity was strongest within the dorsal attention and visual networks during encoding and maintenance. With increasing age, load-modulated functional connectivity strength decreased throughout the cortex. Whole-brain analyses for the relation between connectivity and behavior were non-significant. Our results give additional support to the sensory recruitment model of working memory. We also demonstrate the widespread negative impact of age on the modulation of functional connectivity by working memory load. Older adults might already be close to ceiling in terms of their neural resources at the lowest load and therefore less able to further increase connectivity with increasing task demands.


Subject(s)
Longevity , Memory, Short-Term , Humans , Aged , Young Adult , Adult , Middle Aged , Aged, 80 and over , Memory, Short-Term/physiology , Brain/diagnostic imaging , Brain/physiology , Brain Mapping , Attention/physiology , Magnetic Resonance Imaging , Neural Pathways/physiology
5.
Neurobiol Dis ; 179: 106068, 2023 04.
Article in English | MEDLINE | ID: mdl-36898614

ABSTRACT

BACKGROUND: Neurotransmitters deficits in Frontotemporal Dementia (FTD) are still poorly understood. Better knowledge of neurotransmitters impairment, especially in prodromal disease stages, might tailor symptomatic treatment approaches. METHODS: In the present study, we applied JuSpace toolbox, which allowed for cross-modal correlation of Magnetic Resonance Imaging (MRI)-based measures with nuclear imaging derived estimates covering various neurotransmitter systems including dopaminergic, serotonergic, noradrenergic, GABAergic and glutamatergic neurotransmission. We included 392 mutation carriers (157 GRN, 164 C9orf72, 71 MAPT), together with 276 non-carrier cognitively healthy controls (HC). We tested if the spatial patterns of grey matter volume (GMV) alterations in mutation carriers (relative to HC) are correlated with specific neurotransmitter systems in prodromal (CDR® plus NACC FTLD = 0.5) and in symptomatic (CDR® plus NACC FTLD≥1) FTD. RESULTS: In prodromal stages of C9orf72 disease, voxel-based brain changes were significantly associated with spatial distribution of dopamine and acetylcholine pathways; in prodromal MAPT disease with dopamine and serotonin pathways, while in prodromal GRN disease no significant findings were reported (p < 0.05, Family Wise Error corrected). In symptomatic FTD, a widespread involvement of dopamine, serotonin, glutamate and acetylcholine pathways across all genetic subtypes was found. Social cognition scores, loss of empathy and poor response to emotional cues were found to correlate with the strength of GMV colocalization of dopamine and serotonin pathways (all p < 0.01). CONCLUSIONS: This study, indirectly assessing neurotransmitter deficits in monogenic FTD, provides novel insight into disease mechanisms and might suggest potential therapeutic targets to counteract disease-related symptoms.


Subject(s)
Frontotemporal Dementia , Pick Disease of the Brain , Humans , Frontotemporal Dementia/diagnostic imaging , Frontotemporal Dementia/genetics , C9orf72 Protein/genetics , Acetylcholine , Dopamine , Serotonin , Mutation , Magnetic Resonance Imaging/methods , tau Proteins/genetics
6.
PLoS Comput Biol ; 18(5): e1010079, 2022 05.
Article in English | MEDLINE | ID: mdl-35533200

ABSTRACT

Apathy is a debilitating feature of many neuropsychiatric diseases, that is typically described as a reduction of goal-directed behaviour. Despite its prevalence and prognostic importance, the mechanisms underlying apathy remain controversial. Degeneration of the locus coeruleus-noradrenaline system is known to contribute to motivational deficits, including apathy. In healthy people, noradrenaline has been implicated in signalling the uncertainty of expectations about the environment. We proposed that noradrenergic deficits contribute to apathy by modulating the relative weighting of prior beliefs about action outcomes. We tested this hypothesis in the clinical context of Parkinson's disease, given its associations with apathy and noradrenergic dysfunction. Participants with mild-to-moderate Parkinson's disease (N = 17) completed a randomised double-blind, placebo-controlled, crossover study with 40 mg of the noradrenaline reuptake inhibitor atomoxetine. Prior weighting was inferred from psychophysical analysis of performance in an effort-based visuomotor task, and was confirmed as negatively correlated with apathy. Locus coeruleus integrity was assessed in vivo using magnetisation transfer imaging at ultra-high field 7T. The effect of atomoxetine depended on locus coeruleus integrity: participants with a more degenerate locus coeruleus showed a greater increase in prior weighting on atomoxetine versus placebo. The results indicate a contribution of the noradrenergic system to apathy and potential benefit from noradrenergic treatment of people with Parkinson's disease, subject to stratification according to locus coeruleus integrity. More broadly, these results reconcile emerging predictive processing accounts of the role of noradrenaline in goal-directed behaviour with the clinical symptom of apathy and its potential pharmacological treatment.


Subject(s)
Apathy , Parkinson Disease , Atomoxetine Hydrochloride/pharmacology , Cross-Over Studies , Humans , Norepinephrine , Parkinson Disease/complications , Parkinson Disease/drug therapy
7.
Hum Brain Mapp ; 43(18): 5490-5508, 2022 12 15.
Article in English | MEDLINE | ID: mdl-35855641

ABSTRACT

Brain aging is a complex process that requires a multimodal approach. Neuroimaging can provide insights into brain morphology, functional organization, and vascular dynamics. However, most neuroimaging studies of aging have focused on each imaging modality separately, limiting the understanding of interrelations between processes identified by different modalities and their relevance to cognitive decline in aging. Here, we used a data-driven multimodal approach, linked independent component analysis (ICA), to jointly analyze magnetic resonance imaging (MRI) of grey matter volume, cerebrovascular, and functional network topographies in relation to measures of fluid intelligence. Neuroimaging and cognitive data from the Cambridge Centre for Ageing and Neuroscience study were used, with healthy participants aged 18-88 years (main dataset n = 215 and secondary dataset n = 433). Using linked ICA, functional network activities were characterized in independent components but not captured in the same component as structural and cerebrovascular patterns. Split-sample (n = 108/107) and out-of-sample (n = 433) validation analyses using linked ICA were also performed. Global grey matter volume with regional cerebrovascular changes and the right frontoparietal network activity were correlated with age-related and individual differences in fluid intelligence. This study presents the insights from linked ICA to bring together measurements from multiple imaging modalities, with independent and additive information. We propose that integrating multiple neuroimaging modalities allows better characterization of brain pattern variability and changes associated with healthy aging.


Subject(s)
Healthy Aging , Humans , Healthy Volunteers , Neuroimaging/methods , Aging/pathology , Magnetic Resonance Imaging/methods , Brain/diagnostic imaging , Brain/pathology
8.
Hum Brain Mapp ; 43(3): 985-997, 2022 02 15.
Article in English | MEDLINE | ID: mdl-34713955

ABSTRACT

A common finding in the aging literature is that of the brain's decreased within- and increased between-network functional connectivity. However, it remains unclear what is causing this shift in network organization with age. Given the essential role of the ascending arousal system (ARAS) in cortical activation and previous findings of disrupted ARAS functioning with age, it is possible that age differences in ARAS functioning contribute to disrupted cortical connectivity. We test this possibility here using resting state fMRI data from over 500 individuals across the lifespan from the Cambridge Center for Aging and Neuroscience (Cam-CAN) population-based cohort. Our results show that ARAS-cortical connectivity declines with age and, consistent with our expectations, significantly mediates some age-related differences in connectivity within and between association networks (specifically, within the default mode and between the default mode and salience networks). Additionally, connectivity between the ARAS and association networks predicted cognitive performance across several tasks over and above the effects of age and connectivity within the cortical networks themselves. These findings suggest that age differences in cortical connectivity may be driven, at least in part, by altered arousal signals from the brainstem and that ARAS-cortical connectivity relates to cognitive performance with age.


Subject(s)
Arousal/physiology , Brain Stem/physiology , Cerebral Cortex/physiology , Cognitive Aging/physiology , Connectome , Default Mode Network/physiology , Nerve Net/physiology , Adolescent , Adult , Age Factors , Aged , Aged, 80 and over , Brain Stem/diagnostic imaging , Cerebral Cortex/diagnostic imaging , Default Mode Network/diagnostic imaging , Female , Humans , Magnetic Resonance Imaging , Male , Middle Aged , Nerve Net/diagnostic imaging , Young Adult
9.
Brain ; 144(8): 2513-2526, 2021 09 04.
Article in English | MEDLINE | ID: mdl-33783470

ABSTRACT

Cognitive decline is a common feature of Parkinson's disease, and many of these cognitive deficits fail to respond to dopaminergic therapy. Therefore, targeting other neuromodulatory systems represents an important therapeutic strategy. Among these, the locus coeruleus-noradrenaline system has been extensively implicated in response inhibition deficits. Restoring noradrenaline levels using the noradrenergic reuptake inhibitor atomoxetine can improve response inhibition in some patients with Parkinson's disease, but there is considerable heterogeneity in treatment response. Accurately predicting the patients who would benefit from therapies targeting this neurotransmitter system remains a critical goal, in order to design the necessary clinical trials with stratified patient selection to establish the therapeutic potential of atomoxetine. Here, we test the hypothesis that integrity of the noradrenergic locus coeruleus explains the variation in improvement of response inhibition following atomoxetine. In a double-blind placebo-controlled randomized crossover design, 19 patients with Parkinson's disease completed an acute psychopharmacological challenge with 40 mg of oral atomoxetine or placebo. A stop-signal task was used to measure response inhibition, with stop-signal reaction times obtained through hierarchical Bayesian estimation of an ex-Gaussian race model. Twenty-six control subjects completed the same task without undergoing the drug manipulation. In a separate session, patients and controls underwent ultra-high field 7 T imaging of the locus coeruleus using a neuromelanin-sensitive magnetization transfer sequence. The principal result was that atomoxetine improved stop-signal reaction times in those patients with lower locus coeruleus integrity. This was in the context of a general impairment in response inhibition, as patients on placebo had longer stop-signal reaction times compared to controls. We also found that the caudal portion of the locus coeruleus showed the largest neuromelanin signal decrease in the patients compared to controls. Our results highlight a link between the integrity of the noradrenergic locus coeruleus and response inhibition in patients with Parkinson's disease. Furthermore, they demonstrate the importance of baseline noradrenergic state in determining the response to atomoxetine. We suggest that locus coeruleus neuromelanin imaging offers a marker of noradrenergic capacity that could be used to stratify patients in trials of noradrenergic therapy and to ultimately inform personalized treatment approaches.


Subject(s)
Adrenergic Uptake Inhibitors/pharmacology , Atomoxetine Hydrochloride/pharmacology , Inhibition, Psychological , Locus Coeruleus/diagnostic imaging , Parkinson Disease/diagnostic imaging , Aged , Double-Blind Method , Female , Humans , Locus Coeruleus/drug effects , Magnetic Resonance Imaging , Male , Middle Aged , Neuropsychological Tests , Reaction Time/drug effects
10.
Neuroimage ; 225: 117487, 2021 01 15.
Article in English | MEDLINE | ID: mdl-33164875

ABSTRACT

Early and profound pathological changes are evident in the locus coeruleus (LC) in dementia and Parkinson's disease, with effects on arousal, attention, cognitive and motor control. The LC can be identified in vivo using non-invasive magnetic resonance imaging techniques which have potential as biomarkers for detecting and monitoring disease progression. Technical limitations of existing imaging protocols have impaired the sensitivity to regional contrast variance or the spatial variability on the rostrocaudal extent of the LC, with spatial mapping consistent with post mortem findings. The current study employs a sensitive magnetisation transfer sequence using ultrahigh field 7T MRI to investigate the LC structure in vivo at high-resolution (0.4 × 0.4 × 0.5 mm). Magnetisation transfer images from 53 healthy older volunteers (52 - 84 years) clearly revealed the spatial features of the LC and were used to create a probabilistic LC atlas for older adults. This atlas may be especially relevant for studying disorders associated with older age. To use the atlas does not require use of the same MT sequence of 7T MRI, provided good co-registration and normalisation is achieved. Consistent rostrocaudal gradients of slice-wise volume, contrast and variance along the LC were observed, mirroring distinctive ex vivo spatial distributions of LC cells in its subregions. The contrast-to-noise ratios were calculated for the peak voxels, and for the averaged signals within the atlas, to accommodate the volumetric differences in estimated contrast. The probabilistic atlas is freely available, and the MRI dataset will be made available for non-commercial research, for replication or to facilitate accurate LC localisation and unbiased contrast extraction in future studies.


Subject(s)
Locus Coeruleus/anatomy & histology , Locus Coeruleus/diagnostic imaging , Aged , Aged, 80 and over , Female , Humans , Magnetic Resonance Imaging , Middle Aged
11.
Brain ; 143(5): 1555-1571, 2020 05 01.
Article in English | MEDLINE | ID: mdl-32438414

ABSTRACT

The syndromes caused by frontotemporal lobar degeneration have highly heterogeneous and overlapping clinical features. There has been great progress in the refinement of clinical diagnostic criteria in the past decade, but we propose that a better understanding of aetiology, pathophysiology and symptomatic treatments can arise from a transdiagnostic approach to clinical phenotype and brain morphometry. In a cross-sectional epidemiological study, we examined 310 patients with a syndrome likely to be caused by frontotemporal lobar degeneration, including behavioural variant frontotemporal dementia, non-fluent, and semantic variants of primary progressive aphasia (PPA), progressive supranuclear palsy and corticobasal syndrome. We included patients with logopenic PPA and those who met criteria for PPA but not a specific subtype. To date, 49 patients have a neuropathological diagnosis. A principal component analysis identified symptom dimensions that broadly recapitulated the core features of the main clinical syndromes. However, the subject-specific scores on these dimensions showed considerable overlap across the diagnostic groups. Sixty-two per cent of participants had phenotypic features that met the diagnostic criteria for more than one syndrome. Behavioural disturbance was prevalent in all groups. Forty-four per cent of patients with corticobasal syndrome had progressive supranuclear palsy-like features and 30% of patients with progressive supranuclear palsy had corticobasal syndrome-like features. Many patients with progressive supranuclear palsy and corticobasal syndrome had language impairments consistent with non-fluent variant PPA while patients with behavioural variant frontotemporal dementia often had semantic impairments. Using multivariate source-based morphometry on a subset of patients (n = 133), we identified patterns of covarying brain atrophy that were represented across the diagnostic groups. Canonical correlation analysis of clinical and imaging components found three key brain-behaviour relationships, with a continuous spectrum across the cohort rather than discrete diagnostic entities. In the 46 patients with follow-up (mean 3.6 years) syndromic overlap increased with time. Together, these results show that syndromes associated with frontotemporal lobar degeneration do not form discrete mutually exclusive categories from their clinical features or structural brain changes, but instead exist in a multidimensional spectrum. Patients often manifest diagnostic features of multiple disorders while deficits in behaviour, movement and language domains are not confined to specific diagnostic groups. It is important to recognize individual differences in clinical phenotype, both for clinical management and to understand pathogenic mechanisms. We suggest that a transdiagnostic approach to the spectrum of frontotemporal lobar degeneration syndromes provides a useful framework with which to understand disease aetiology, progression, and heterogeneity and to target future treatments to a higher proportion of patients.


Subject(s)
Frontotemporal Lobar Degeneration , Phenotype , Aged , Female , Humans , Magnetic Resonance Imaging , Male , Middle Aged , Principal Component Analysis
12.
Brain ; 143(5): 1588-1602, 2020 05 01.
Article in English | MEDLINE | ID: mdl-32380523

ABSTRACT

Tau pathology, neuroinflammation, and neurodegeneration are key aspects of Alzheimer's disease. Understanding whether these features predict cognitive decline, alone or in combination, is crucial to develop new prognostic measures and enhanced stratification for clinical trials. Here, we studied how baseline assessments of in vivo tau pathology (measured by 18F-AV-1451 PET), neuroinflammation (measured by 11C-PK11195 PET) and brain atrophy (derived from structural MRI) predicted longitudinal cognitive changes in patients with Alzheimer's disease pathology. Twenty-six patients (n = 12 with clinically probable Alzheimer's dementia and n = 14 with amyloid-positive mild cognitive impairment) and 29 healthy control subjects underwent baseline assessment with 18F-AV-1451 PET, 11C-PK11195 PET, and structural MRI. Cognition was examined annually over the subsequent 3 years using the revised Addenbrooke's Cognitive Examination. Regional grey matter volumes, and regional binding of 18F-AV-1451 and 11C-PK11195 were derived from 15 temporo-parietal regions characteristically affected by Alzheimer's disease pathology. A principal component analysis was used on each imaging modality separately, to identify the main spatial distributions of pathology. A latent growth curve model was applied across the whole sample on longitudinal cognitive scores to estimate the rate of annual decline in each participant. We regressed the individuals' estimated rate of cognitive decline on the neuroimaging components and examined univariable predictive models with single-modality predictors, and a multi-modality predictive model, to identify the independent and combined prognostic value of the different neuroimaging markers. Principal component analysis identified a single component for the grey matter atrophy, while two components were found for each PET ligand: one weighted to the anterior temporal lobe, and another weighted to posterior temporo-parietal regions. Across the whole-sample, the single-modality models indicated significant correlations between the rate of cognitive decline and the first component of each imaging modality. In patients, both stepwise backward elimination and Bayesian model selection revealed an optimal predictive model that included both components of 18F-AV-1451 and the first (i.e. anterior temporal) component for 11C-PK11195. However, the MRI-derived atrophy component and demographic variables were excluded from the optimal predictive model of cognitive decline. We conclude that temporo-parietal tau pathology and anterior temporal neuroinflammation predict cognitive decline in patients with symptomatic Alzheimer's disease pathology. This indicates the added value of PET biomarkers in predicting cognitive decline in Alzheimer's disease, over and above MRI measures of brain atrophy and demographic data. Our findings also support the strategy for targeting tau and neuroinflammation in disease-modifying therapy against Alzheimer's disease.


Subject(s)
Alzheimer Disease/diagnostic imaging , Alzheimer Disease/pathology , Cognitive Dysfunction/diagnostic imaging , Microglia/pathology , tau Proteins/metabolism , Aged , Alzheimer Disease/complications , Cognitive Dysfunction/etiology , Cognitive Dysfunction/pathology , Female , Humans , Image Interpretation, Computer-Assisted , Magnetic Resonance Imaging/methods , Male , Middle Aged , Neuroimaging/methods , Positron-Emission Tomography/methods
13.
Vet Ophthalmol ; 24(3): 265-278, 2021 May.
Article in English | MEDLINE | ID: mdl-33794048

ABSTRACT

OBJECTIVES: To identify bacterial microorganisms associated with canine keratomalacia, review their antimicrobial sensitivity, and evaluate clinical outcomes compared to results of microbial culture. METHODS: Retrospective analysis of clinical records of dogs diagnosed with a melting corneal ulcer presented to a referral hospital in Hertfordshire, UK between 2014 and 2018. RESULTS: One hundred and ten melting corneal ulcers were sampled in 106 dogs. The most common pure bacterial isolate was Pseudomonas aeruginosa (n = 26) followed by ß-hemolytic Streptococcus (n = 12). Melting corneal ulcers that cultured coagulase-positive Staphylococcus, coliform bacteria, Pasteurella multocida, Enterococcus, and Streptococcus viridans presented in smaller numbers and were analyzed together (n = 16). Multiple cultures were identified in nine cases (n = 9). Forty-seven cultures yielded no bacterial growth (n = 47). The susceptibility to fluoroquinolones remained high with the exception of ß-hemolytic Streptococci. There was no significant difference in the ulcer severity at presentation in regard to the cultured bacteria. Overall, 63 eyes (57%) received surgical grafting in addition to medical treatment. In 14 cases (13%), the progression of corneal melting despite medical ± surgical treatment resulted in enucleation. Fifty-seven percent (8/14) of the enucleated eyes cultured pure Pseudomonas aeruginosa isolates. In contrast, all ß-hemolytic Streptococcus-associated ulcers healed. CONCLUSIONS: The most common bacterial species associated with canine keratomalacia were Pseudomonas aeruginosa and ß-hemolytic Streptococcus. Because of the variation in antibacterial sensitivity between these two species, bacterial culture and sensitivity testing should be performed in all dogs presenting with keratomalacia. Melting corneal ulcers associated with pure Pseudomonas infection were significantly more likely to result in globe loss than melting corneal ulcers associated with other cultures.


Subject(s)
Dog Diseases/epidemiology , Eye Infections, Bacterial/veterinary , Vitamin A Deficiency/veterinary , Animals , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Dogs , England/epidemiology , Eye Infections, Bacterial/drug therapy , Eye Infections, Bacterial/epidemiology , Eye Infections, Bacterial/microbiology , Female , Male , Pedigree , Pseudomonas Infections/drug therapy , Pseudomonas Infections/epidemiology , Pseudomonas Infections/microbiology , Pseudomonas Infections/veterinary , Pseudomonas aeruginosa/drug effects , Pseudomonas aeruginosa/isolation & purification , Records/veterinary , Retrospective Studies , Streptococcal Infections/drug therapy , Streptococcal Infections/epidemiology , Streptococcal Infections/microbiology , Streptococcal Infections/veterinary , Streptococcus/drug effects , Streptococcus/isolation & purification , Vitamin A Deficiency/drug therapy , Vitamin A Deficiency/epidemiology , Vitamin A Deficiency/microbiology
14.
Alzheimers Dement ; 17(3): 500-514, 2021 03.
Article in English | MEDLINE | ID: mdl-33215845

ABSTRACT

INTRODUCTION: The presymptomatic phase of neurodegenerative disease can last many years, with sustained cognitive function despite progressive atrophy. We investigate this phenomenon in familial frontotemporal dementia (FTD). METHODS: We studied 121 presymptomatic FTD mutation carriers and 134 family members without mutations, using multivariate data-driven approach to link cognitive performance with both structural and functional magnetic resonance imaging. Atrophy and brain network connectivity were compared between groups, in relation to the time from expected symptom onset. RESULTS: There were group differences in brain structure and function, in the absence of differences in cognitive performance. Specifically, we identified behaviorally relevant structural and functional network differences. Structure-function relationships were similar in both groups, but coupling between functional connectivity and cognition was stronger for carriers than for non-carriers, and increased with proximity to the expected onset of disease. DISCUSSION: Our findings suggest that the maintenance of functional network connectivity enables carriers to maintain cognitive performance.


Subject(s)
Atrophy/pathology , Brain/pathology , Cognition/physiology , Frontotemporal Dementia/genetics , Prodromal Symptoms , tau Proteins/genetics , C9orf72 Protein/genetics , Humans , Internationality , Magnetic Resonance Imaging , Middle Aged , Mutation/genetics
15.
Alzheimers Dement ; 17(6): 969-983, 2021 06.
Article in English | MEDLINE | ID: mdl-33316852

ABSTRACT

INTRODUCTION: Apathy adversely affects prognosis and survival of patients with frontotemporal dementia (FTD). We test whether apathy develops in presymptomatic genetic FTD, and is associated with cognitive decline and brain atrophy. METHODS: Presymptomatic carriers of MAPT, GRN or C9orf72 mutations (N = 304), and relatives without mutations (N = 296) underwent clinical assessments and MRI at baseline, and annually for 2 years. Longitudinal changes in apathy, cognition, gray matter volumes, and their relationships were analyzed with latent growth curve modeling. RESULTS: Apathy severity increased over time in presymptomatic carriers, but not in non-carriers. In presymptomatic carriers, baseline apathy predicted cognitive decline over two years, but not vice versa. Apathy progression was associated with baseline low gray matter volume in frontal and cingulate regions. DISCUSSION: Apathy is an early marker of FTD-related changes and predicts a subsequent subclinical deterioration of cognition before dementia onset. Apathy may be a modifiable factor in those at risk of FTD.


Subject(s)
Apathy , Brain/pathology , Frontotemporal Dementia/genetics , Prodromal Symptoms , Atrophy/pathology , Cognitive Dysfunction/pathology , Female , Gray Matter/pathology , Humans , Magnetic Resonance Imaging , Male , Middle Aged , Mutation/genetics
16.
Neuroimage ; 222: 117299, 2020 11 15.
Article in English | MEDLINE | ID: mdl-32828920

ABSTRACT

Ageing is commonly associated with changes to segregation and integration of functional brain networks, but, in isolation, current network-based approaches struggle to elucidate changes across the many axes of functional organisation. However, the advent of gradient mapping techniques in neuroimaging provides a new means of studying functional organisation in a multi-dimensional connectivity space. Here, we studied ageing and behaviourally-relevant differences in a three-dimensional connectivity space using the Cambridge Centre for Ageing Neuroscience cohort (n = 643). Building on gradient mapping techniques, we developed a set of measures to quantify the dispersion within and between functional communities. We detected a strong shift of the visual network across the adult lifespan from an extreme to a more central position in the 3D gradient space. In contrast, the dispersion distance between transmodal communities (dorsal attention, ventral attention, frontoparietal and default mode) did not change. However, these communities themselves were increasingly dispersed with increasing age, reflecting more dissimilar functional connectivity profiles within each community. Increasing dispersion of frontoparietal, attention and default mode networks, in particular, were associated negatively with cognition, measured by fluid intelligence. By using a technique that explicitly captures the ordering of functional systems in a multi-dimensional hierarchical framework, we identified behaviorally-relevant age-related differences of within and between network organisation. We propose that the study of functional gradients across the adult lifespan could provide insights that may facilitate the development of new strategies to maintain cognitive ability across the lifespan in health and disease.


Subject(s)
Aging/physiology , Brain/physiology , Cognition/physiology , Longevity/physiology , Nerve Net/physiology , Adolescent , Adult , Aged , Aged, 80 and over , Attention/physiology , Brain Mapping , Female , Humans , Magnetic Resonance Imaging/methods , Male , Middle Aged , Young Adult
17.
J Neurosci ; 38(36): 7887-7900, 2018 09 05.
Article in English | MEDLINE | ID: mdl-30049889

ABSTRACT

Inhibitory control requires precise regulation of activity and connectivity within multiple brain networks. Previous studies have typically evaluated age-related changes in regional activity or changes in interregional interactions. Instead, we test the hypothesis that activity and connectivity make distinct, complementary contributions to performance across the life span and the maintenance of successful inhibitory control systems. A representative sample of healthy human adults in a large, population-based life span cohort performed an integrated Stop-Signal (SS)/No-Go task during functional magnetic resonance imaging (n = 119; age range, 18-88 years). Individual differences in inhibitory control were measured in terms of the SS reaction time (SSRT), using the blocked integration method. Linear models and independent components analysis revealed that individual differences in SSRT correlated with both activity and connectivity in a distributed inhibition network, comprising prefrontal, premotor, and motor regions. Importantly, this pattern was moderated by age, such that the association between inhibitory control and connectivity, but not activity, differed with age. Multivariate statistics and out-of-sample validation tests of multifactorial functional organization identified differential roles of activity and connectivity in determining an individual's SSRT across the life span. We propose that age-related differences in adaptive cognitive control are best characterized by the joint consideration of multifocal activity and connectivity within distributed brain networks. These insights may facilitate the development of new strategies to support cognitive ability in old age.SIGNIFICANCE STATEMENT The preservation of cognitive and motor control is crucial for maintaining well being across the life span. We show that such control is determined by both activity and connectivity within distributed brain networks. In a large, population-based cohort, we used a novel whole-brain multivariate approach to estimate the functional components of inhibitory control, in terms of their activity and connectivity. Both activity and connectivity in the inhibition network changed with age. But only the association between performance and connectivity, not activity, differed with age. The results suggest that adaptive control is best characterized by the joint consideration of multifocal activity and connectivity. These insights may facilitate the development of new strategies to maintain cognitive ability across the life span in health and disease.


Subject(s)
Aging/psychology , Brain/diagnostic imaging , Executive Function/physiology , Inhibition, Psychological , Nerve Net/diagnostic imaging , Adolescent , Adult , Aged , Aged, 80 and over , Brain Mapping , Female , Humans , Individuality , Longevity/physiology , Magnetic Resonance Imaging , Male , Middle Aged , Neuropsychological Tests , Reaction Time/physiology , Young Adult
18.
J Neurosci ; 36(11): 3115-26, 2016 Mar 16.
Article in English | MEDLINE | ID: mdl-26985024

ABSTRACT

The maintenance of wellbeing across the lifespan depends on the preservation of cognitive function. We propose that successful cognitive aging is determined by interactions both within and between large-scale functional brain networks. Such connectivity can be estimated from task-free functional magnetic resonance imaging (fMRI), also known as resting-state fMRI (rs-fMRI). However, common correlational methods are confounded by age-related changes in the neurovascular signaling. To estimate network interactions at the neuronal rather than vascular level, we used generative models that specified both the neural interactions and a flexible neurovascular forward model. The networks' parameters were optimized to explain the spectral dynamics of rs-fMRI data in 602 healthy human adults from population-based cohorts who were approximately uniformly distributed between 18 and 88 years (www.cam-can.com). We assessed directed connectivity within and between three key large-scale networks: the salience network, dorsal attention network, and default mode network. We found that age influences connectivity both within and between these networks, over and above the effects on neurovascular coupling. Canonical correlation analysis revealed that the relationship between network connectivity and cognitive function was age-dependent: cognitive performance relied on neural dynamics more strongly in older adults. These effects were driven partly by reduced stability of neural activity within all networks, as expressed by an accelerated decay of neural information. Our findings suggest that the balance of excitatory connectivity between networks, and the stability of intrinsic neural representations within networks, changes with age. The cognitive function of older adults becomes increasingly dependent on these factors. SIGNIFICANCE STATEMENT: Maintaining cognitive function is critical to successful aging. To study the neural basis of cognitive function across the lifespan, we studied a large population-based cohort (n = 602, 18-88 years), separating neural connectivity from vascular components of fMRI signals. Cognitive ability was influenced by the strength of connection within and between functional brain networks, and this positive relationship increased with age. In older adults, there was more rapid decay of intrinsic neuronal activity in multiple regions of the brain networks, which related to cognitive performance. Our data demonstrate increased reliance on network flexibility to maintain cognitive function, in the presence of more rapid decay of neural activity. These insights will facilitate the development of new strategies to maintain cognitive ability.


Subject(s)
Aging/physiology , Brain Mapping , Brain/physiology , Cognition/physiology , Neural Pathways/physiology , Adolescent , Adult , Brain/blood supply , Female , Humans , Imaging, Three-Dimensional , Magnetic Resonance Imaging , Male , Models, Neurological , Neural Pathways/blood supply , Neuropsychological Tests , Oxygen/blood , Young Adult
19.
Hum Brain Mapp ; 38(8): 4125-4156, 2017 08.
Article in English | MEDLINE | ID: mdl-28544076

ABSTRACT

Many studies report individual differences in functional connectivity, such as those related to age. However, estimates of connectivity from fMRI are confounded by other factors, such as vascular health, head motion and changes in the location of functional regions. Here, we investigate the impact of these confounds, and pre-processing strategies that can mitigate them, using data from the Cambridge Centre for Ageing & Neuroscience (www.cam-can.com). This dataset contained two sessions of resting-state fMRI from 214 adults aged 18-88. Functional connectivity between all regions was strongly related to vascular health, most likely reflecting respiratory and cardiac signals. These variations in mean connectivity limit the validity of between-participant comparisons of connectivity estimates, and were best mitigated by regression of mean connectivity over participants. We also showed that high-pass filtering, instead of band-pass filtering, produced stronger and more reliable age-effects. Head motion was correlated with gray-matter volume in selected brain regions, and with various cognitive measures, suggesting that it has a biological (trait) component, and warning against regressing out motion over participants. Finally, we showed that the location of functional regions was more variable in older adults, which was alleviated by smoothing the data, or using a multivariate measure of connectivity. These results demonstrate that analysis choices have a dramatic impact on connectivity differences between individuals, ultimately affecting the associations found between connectivity and cognition. It is important that fMRI connectivity studies address these issues, and we suggest a number of ways to optimize analysis choices. Hum Brain Mapp 38:4125-4156, 2017. © 2017 Wiley Periodicals, Inc.


Subject(s)
Brain/diagnostic imaging , Brain/physiology , Healthy Aging/physiology , Magnetic Resonance Imaging , Adolescent , Adult , Aged , Aged, 80 and over , Biological Variation, Population , Brain/blood supply , Brain Mapping/methods , Female , Gray Matter/blood supply , Gray Matter/diagnostic imaging , Gray Matter/physiology , Head Movements , Humans , Magnetic Resonance Imaging/methods , Male , Middle Aged , Multivariate Analysis , Neural Pathways/blood supply , Neural Pathways/diagnostic imaging , Neural Pathways/physiology , Organ Size , Regression Analysis , Reproducibility of Results , Rest , Young Adult
20.
Hum Brain Mapp ; 36(6): 2248-69, 2015 Jun.
Article in English | MEDLINE | ID: mdl-25727740

ABSTRACT

In functional magnetic resonance imaging (fMRI) research one is typically interested in neural activity. However, the blood-oxygenation level-dependent (BOLD) signal is a composite of both neural and vascular activity. As factors such as age or medication may alter vascular function, it is essential to account for changes in neurovascular coupling when investigating neurocognitive functioning with fMRI. The resting-state fluctuation amplitude (RSFA) in the fMRI signal (rsfMRI) has been proposed as an index of vascular reactivity. The RSFA compares favourably with other techniques such as breath-hold and hypercapnia, but the latter are more difficult to perform in some populations, such as older adults. The RSFA is therefore a candidate for use in adjusting for age-related changes in vascular reactivity in fMRI studies. The use of RSFA is predicated on its sensitivity to vascular rather than neural factors; however, the extent to which each of these factors contributes to RSFA remains to be characterized. The present work addressed these issues by comparing RSFA (i.e., rsfMRI variability) to proxy measures of (i) cardiovascular function in terms of heart rate (HR) and heart rate variability (HRV) and (ii) neural activity in terms of resting state magnetoencephalography (rsMEG). We derived summary scores of RSFA, a sensorimotor task BOLD activation, cardiovascular function and rsMEG variability for 335 healthy older adults in the population-based Cambridge Centre for Ageing and Neuroscience cohort (Cam-CAN; www.cam-can.com). Mediation analysis revealed that the effects of ageing on RSFA were significantly mediated by vascular factors, but importantly not by the variability in neuronal activity. Furthermore, the converse effects of ageing on the rsMEG variability were not mediated by vascular factors. We then examined the effect of RSFA scaling of task-based BOLD in the sensorimotor task. The scaling analysis revealed that much of the effects of age on task-based activation studies with fMRI do not survive correction for changes in vascular reactivity, and are likely to have been overestimated in previous fMRI studies of ageing. The results from the mediation analysis demonstrate that RSFA is modulated by measures of vascular function and is not driven solely by changes in the variance of neural activity. Based on these findings we propose that the RSFA scaling method is articularly useful in large scale and longitudinal neuroimaging studies of ageing, or with frail participants, where alternative measures of vascular reactivity are impractical.


Subject(s)
Aging/physiology , Brain/physiology , Magnetic Resonance Imaging , Magnetoencephalography , Adolescent , Adult , Aged , Aged, 80 and over , Alpha Rhythm/physiology , Beta Rhythm/physiology , Brain/blood supply , Brain Mapping/methods , Cerebrovascular Circulation/physiology , Cohort Studies , Female , Humans , Magnetic Resonance Imaging/methods , Magnetoencephalography/methods , Male , Middle Aged , Multimodal Imaging/methods , Oxygen/blood , Rest , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL