Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
Proc Natl Acad Sci U S A ; 117(43): 26885-26894, 2020 10 27.
Article in English | MEDLINE | ID: mdl-33046647

ABSTRACT

Ectromelia virus (ECTV) causes mousepox, a surrogate mouse model for smallpox caused by variola virus in humans. Both orthopoxviruses encode tumor necrosis factor receptor (TNFR) homologs or viral TNFR (vTNFR). These homologs are termed cytokine response modifier (Crm) proteins, containing a TNF-binding domain and a chemokine-binding domain called smallpox virus-encoded chemokine receptor (SECRET) domain. ECTV encodes one vTNFR known as CrmD. Infection of ECTV-resistant C57BL/6 mice with a CrmD deletion mutant virus resulted in uniform mortality due to excessive TNF secretion and dysregulated inflammatory cytokine production. CrmD dampened pathology, leukocyte recruitment, and inflammatory cytokine production in lungs including TNF, IL-6, IL-10, and IFN-γ. Blockade of TNF, IL-6, or IL-10R function with monoclonal antibodies reduced lung pathology and provided 60 to 100% protection from otherwise lethal infection. IFN-γ caused lung pathology only when both the TNF-binding and SECRET domains were absent. Presence of the SECRET domain alone induced significantly higher levels of IL-1ß, IL-6, and IL-10, likely overcoming any protective effects that might have been afforded by anti-IFN-γ treatment. The use of TNF-deficient mice and those that express only membrane-associated but not secreted TNF revealed that CrmD is critically dependent on host TNF for its function. In vitro, recombinant Crm proteins from different orthopoxviruses bound to membrane-associated TNF and dampened inflammatory gene expression through reverse signaling. CrmD does not affect virus replication; however, it provides the host advantage by enabling survival. Host survival would facilitate virus spread, which would also provide an advantage to the virus.


Subject(s)
Ectromelia virus/physiology , Host-Pathogen Interactions , Receptors, Tumor Necrosis Factor/metabolism , Respiratory Tract Infections/virology , Viral Proteins/metabolism , Animals , Cell Line , Chlorocebus aethiops , Female , Lung/pathology , Male , Mice , Mice, Inbred C57BL , Respiratory Tract Infections/pathology , Viral Load
2.
Proc Natl Acad Sci U S A ; 117(27): 15935-15946, 2020 07 07.
Article in English | MEDLINE | ID: mdl-32571912

ABSTRACT

Excessive tumor necrosis factor (TNF) is known to cause significant pathology. Paradoxically, deficiency in TNF (TNF-/-) also caused substantial pathology during respiratory ectromelia virus (ECTV) infection, a surrogate model for smallpox. TNF-/- mice succumbed to fulminant disease whereas wild-type mice, and those engineered to express only transmembrane TNF (mTNF), fully recovered. TNF deficiency did not affect viral load or leukocyte recruitment but caused severe lung pathology and excessive production of the cytokines interleukin (IL)-6, IL-10, transforming growth factor beta (TGF-ß), and interferon gamma (IFN-γ). Short-term blockade of these cytokines significantly reduced lung pathology in TNF-/- mice concomitant with induction of protein inhibitor of activated STAT3 (PIAS3) and/or suppressor of cytokine signaling 3 (SOCS3), factors that inhibit STAT3 activation. Consequently, inhibition of STAT3 activation with an inhibitor reduced lung pathology. Long-term neutralization of IL-6 or TGF-ß protected TNF-/- mice from an otherwise lethal infection. Thus, mTNF alone is necessary and sufficient to regulate lung inflammation but it has no direct antiviral activity against ECTV. The data indicate that targeting specific cytokines or cytokine-signaling pathways to reduce or ameliorate lung inflammation during respiratory viral infections is possible but that the timing and duration of the interventive measure are critical.


Subject(s)
Cytokines/metabolism , Poxviridae Infections/virology , Poxviridae/metabolism , Tumor Necrosis Factor-alpha/genetics , Tumor Necrosis Factor-alpha/metabolism , Animals , Cell Line, Tumor , Female , Interferon-gamma/metabolism , Interleukin-10/metabolism , Interleukin-6/metabolism , Mice , Mice, Inbred C57BL , Mice, Knockout , Poxviridae/immunology , Poxviridae Infections/immunology , Poxviridae Infections/pathology , Respiratory Tract Infections/immunology , Respiratory Tract Infections/virology , STAT3 Transcription Factor/genetics , STAT3 Transcription Factor/metabolism , Suppressor of Cytokine Signaling 3 Protein/metabolism , Transforming Growth Factor beta/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL