Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
Int J Pediatr Otorhinolaryngol ; 169: 111559, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37126976

ABSTRACT

OBJECTIVE: To present external airway splinting with bioabsorbable airway supportive devices (ASD) for severe, life-threatening cases of pediatric tracheomalacia (TM) or tracheobronchomalacia (TBM). METHODS: A retrospective cohort was performed for 5 pediatric patients with severe TM or TBM who underwent ASD placement. Devices were designed and 3D-printed from a bioabsorbable material, polycaprolactone (PCL). Pre-operative planning included 3-dimensional airway modeling of tracheal collapse and tracheal suture placement using nonlinear finite element (FE) methods. Pre-operative modeling revealed that triads along the ASD open edges and center were the most effective suture locations for optimizing airway patency. Pediatric cardiothoracic surgery and otolaryngology applied the ASDs by suspending the trachea to the ASD with synchronous bronchoscopy. Respiratory needs were trended for all cases. Data from pediatric patients with tracheostomy and diagnosis of TM or TBM, but without ASD, were included for discussion. RESULTS: Five patients (2 Females, 3 Males, ages 2-9 months at time of ASD) were included. Three patients were unable to wean from respiratory support after vascular ring division; all three weaned to room air post-ASD. Two patients received tracheostomies prior to ASD placement, but continued to experience apparent life-threatening events (ALTE) and required ventilation with supraphysiologic ventilator settings. One patient weaned respiratory support successfully after ASD placement. The last patient died post-ASD due to significant respiratory co-morbidity. CONCLUSION: ASD can significantly benefit patients with severe, unrelenting tracheomalacia or tracheobronchomalacia. Proper multidisciplinary case deliberation and selection are key to success with ASD. Pre-operative airway modeling allows proper suture placement to optimally address the underlying airway collapse.


Subject(s)
Tracheobronchomalacia , Tracheomalacia , Male , Female , Child , Humans , Infant , Tracheomalacia/therapy , Splints , Retrospective Studies , Tracheobronchomalacia/surgery , Trachea/surgery
2.
PeerJ ; 9: e12274, 2021.
Article in English | MEDLINE | ID: mdl-34760357

ABSTRACT

Surveys of microbial communities across transitions coupled with contextual measures of the environment provide a useful approach to dissect the factors determining distributions of microorganisms across ecological niches. Here, monthly time-series samples of surface seawater along a transect spanning the nearshore coastal environment within Kane'ohe Bay on the island of O'ahu, Hawai'i, and the adjacent offshore environment were collected to investigate the diversity and abundance of SAR11 marine bacteria (order Pelagibacterales) over a 2-year time period. Using 16S ribosomal RNA gene amplicon sequencing, the spatiotemporal distributions of major SAR11 subclades and exact amplicon sequence variants (ASVs) were evaluated. Seven of eight SAR11 subclades detected in this study showed distinct subclade distributions across the coastal to offshore environments. The SAR11 community was dominated by seven (of 106 total) SAR11 ASVs that made up an average of 77% of total SAR11. These seven ASVs spanned five different SAR11 subclades (Ia, Ib, IIa, IV, and Va), and were recovered from all samples collected from either the coastal environment, the offshore, or both. SAR11 ASVs were more often restricted spatially to coastal or offshore environments (64 of 106 ASVs) than they were shared among coastal, transition, and offshore environments (39 of 106 ASVs). Overall, offshore SAR11 communities contained a higher diversity of SAR11 ASVs than their nearshore counterparts, with the highest diversity within the little-studied subclade IIa. This study reveals ecological differentiation of SAR11 marine bacteria across a short physiochemical gradient, further increasing our understanding of how SAR11 genetic diversity partitions into distinct ecological units.

3.
PeerJ ; 7: e6609, 2019.
Article in English | MEDLINE | ID: mdl-30918757

ABSTRACT

Plant-associated microbes are critical players in host health, fitness and productivity. Despite microbes' importance in plants, seeds are mostly sterile, and most plant microbes are recruited from an environmental pool. Surprisingly little is known about the processes that govern how environmental microbes assemble on plants in nature. In this study we examine how bacteria are distributed across plant parts, and how these distributions interact with spatial gradients. We sequenced amplicons of bacteria from the surfaces of six plant parts and adjacent soil of Scaevola taccada, a common beach shrub, along a 60 km transect spanning O'ahu island's windward coast, as well as within a single intensively-sampled site. Bacteria are more strongly partitioned by plant part as compared with location. Within S. taccada plants, microbial communities are highly nested: soil and rhizosphere communities contain much of the diversity found elsewhere, whereas reproductive parts fall at the bottom of the nestedness hierarchy. Nestedness patterns suggest either that microbes follow a source/sink gradient from the ground up, or else that assembly processes correlate with other traits, such as tissue persistence, that are vertically stratified. Our work shines light on the origins and determinants of plant-associated microbes across plant and landscape scales.

4.
Front Microbiol ; 8: 2178, 2017.
Article in English | MEDLINE | ID: mdl-29250036

ABSTRACT

Despite their important role of linking microbial and classic marine food webs, data on biogeographical patterns of microbial eukaryotic grazers are limited, and even fewer studies have used molecular tools to assess active (i.e., those expressing genes) community members. Marine ciliate diversity is believed to be greatest at the chlorophyll maximum, where there is an abundance of autotrophic prey, and is often assumed to decline with depth. Here, we assess the abundant (DNA) and active (RNA) marine ciliate communities throughout the water column at two stations off the New England coast (Northwest Atlantic)-a coastal station 43 km from shore (40 m depth) and a slope station 135 km off shore (1,000 m). We analyze ciliate communities using a DNA fingerprinting technique, Denaturing Gradient Gel Electrophoresis (DGGE), which captures patterns of abundant community members. We compare estimates of ciliate communities from SSU-rDNA (abundant) and SSU-rRNA (active) and find complex patterns throughout the water column, including many active lineages below the photic zone. Our analyses reveal (1) a number of widely-distributed taxa that are both abundant and active; (2) considerable heterogeneity in patterns of presence/absence of taxa in offshore samples taken 50 m apart throughout the water column; and (3) three distinct ciliate assemblages based on position from shore and depth. Analysis of active (RNA) taxa uncovers biodiversity hidden to traditional DNA-based approaches (e.g., clone library, rDNA amplicon studies).

SELECTION OF CITATIONS
SEARCH DETAIL