Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
Nature ; 529(7584): 54-8, 2016 Jan 07.
Article in English | MEDLINE | ID: mdl-26738590

ABSTRACT

How black holes accrete surrounding matter is a fundamental yet unsolved question in astrophysics. It is generally believed that matter is absorbed into black holes via accretion disks, the state of which depends primarily on the mass-accretion rate. When this rate approaches the critical rate (the Eddington limit), thermal instability is supposed to occur in the inner disk, causing repetitive patterns of large-amplitude X-ray variability (oscillations) on timescales of minutes to hours. In fact, such oscillations have been observed only in sources with a high mass-accretion rate, such as GRS 1915+105 (refs 2, 3). These large-amplitude, relatively slow timescale, phenomena are thought to have physical origins distinct from those of X-ray or optical variations with small amplitudes and fast timescales (less than about 10 seconds) often observed in other black-hole binaries-for example, XTE J1118+480 (ref. 4) and GX 339-4 (ref. 5). Here we report an extensive multi-colour optical photometric data set of V404 Cygni, an X-ray transient source containing a black hole of nine solar masses (and a companion star) at a distance of 2.4 kiloparsecs (ref. 8). Our data show that optical oscillations on timescales of 100 seconds to 2.5 hours can occur at mass-accretion rates more than ten times lower than previously thought. This suggests that the accretion rate is not the critical parameter for inducing inner-disk instabilities. Instead, we propose that a long orbital period is a key condition for these large-amplitude oscillations, because the outer part of the large disk in binaries with long orbital periods will have surface densities too low to maintain sustained mass accretion to the inner part of the disk. The lack of sustained accretion--not the actual rate--would then be the critical factor causing large-amplitude oscillations in long-period systems.

2.
An Acad Bras Cienc ; 93(suppl 1): e20200883, 2021.
Article in English | MEDLINE | ID: mdl-34008766

ABSTRACT

Gamma-ray bursts (GRBs) are the most energetic and mysterious events in the Universe, which are observed in all ranges of electromagnetic spectrum. Most valuable results about physics of GRB are obtained by optical observations. GRBs are initially detected in gamma-rays with poor localization accuracy, and an optical counterpart should be found. The faster the counterpart is found, the more it can give to physics. This first phase, as a rule, corresponds to an early afterglow. The next phases of the observations are multicolor photometry, polarimetry, spectroscopy, and few days later the search for a supernova or kilonova associated with the GRB, and finally, observations of the host galaxy. To manage the problem of fast optical observations, telescopes with a small aperture are suitable. They can have a large field of view, which is necessary to cover initial localizations of GRBs. The sensitivity of the telescope+detector may be sufficient to record statistically significant light curve with fine time resolution. We describe one of the networks of telescopes with a small aperture IKI-GRB FuN, and present the results of early optical observation of GRB sources, and discuss the design requirements of the optical observations for effective GRB research in the next decade.

SELECTION OF CITATIONS
SEARCH DETAIL