Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 35
Filter
1.
Genet Mol Biol ; 46(3 Suppl 1): e20230109, 2024.
Article in English | MEDLINE | ID: mdl-38315880

ABSTRACT

DOF (DNA binding with one finger) proteins are part of a plant-specific transcription factor (TF) gene family widely involved in plant development and stress responses. Many studies have uncovered their structural and functional characteristics in recent years, leading to a rising number of genome-wide identification study approaches, unveiling the DOF family expansion in angiosperm species. Nonetheless, these studies primarily concentrate on particular taxonomic groups. Identifying DOF TFs within less-represented groups is equally crucial, as it enhances our comprehension of their evolutionary history, contributions to plant phenotypic diversity, and role in adaptation. This review summarizes the main findings and progress of genome-wide identification and characterization studies of DOF TFs in Viridiplantae, exposing their roles as players in plant adaptation and a glimpse of their evolutionary history. We also present updated data on the identification and number of DOF genes in native and wild species. Altogether, these data, comprising a phylogenetic analysis of 2124 DOF homologs spanning 83 different species, will contribute to identifying new functional DOF groups, adding to our understanding of the mechanisms driving plant evolution and offering valuable insights into their potential applications.

2.
Genet Mol Biol ; 46(3 Suppl 1): e20230125, 2024.
Article in English | MEDLINE | ID: mdl-38259032

ABSTRACT

Synonymous single nucleotide variants (sSNVs) do not alter the primary structure of a protein, thus it was previously accepted that they were neutral. Recently, several studies demonstrated their significance to a range of diseases. Still, variant prioritization strategies lack focus on sSNVs. Here, we identified 22,841 deleterious synonymous variants in 125,748 human exomes using two in silico predictors (SilVA and CADD). While 98.2% of synonymous variants are classified as neutral, 1.8% are predicted to be deleterious, yielding an average of 9.82 neutral and 0.18 deleterious sSNVs per exome. Further investigation of prediction features via Heterogeneous Ensemble Feature Selection revealed that impact on amino acid sequence and conservation carry the most weight for a deleterious prediction. Thirty nine detrimental sSNVs are not rare and are located on disease associated genes. Ten distinct putatively non-deleterious sSNVs are likely to be under positive selection in the North-Western European and East Asian populations. Taken together our analysis gives voice to the so-called silent mutations as we propose a robust framework for evaluating the deleteriousness of sSNVs in variant prioritization studies.

3.
Genet Mol Biol ; 46(3 Suppl 1): e20230145, 2023.
Article in English | MEDLINE | ID: mdl-37948507

ABSTRACT

We compiled studies that addressed morphological and physicochemical traits, as well as population genetic studies involving jelly palms, genus Butia (Arecaceae). First, we conducted a bibliometric study with selected articles, by revising the fundamental contributions to unraveling phenotypic traits that have been used for describing the phenotypic variation within and among populations. Moreover, we sought to comprehend the patterns of genetic diversity and structure that have been presented so far, based on molecular markers. Finally, we conducted a review of the gene sequences registered to NCBI for Butia. Overall, morphological descriptors have been proposed to depict population-level variability, but the most significant results are available from chemical properties and characterization of metabolites, revealing important traits to being explored. Yet, limited information is available to describe population variation and their genetic components. On the molecular level, almost all studies so far provided results with classical molecular markers. The literature of SNP markers for Butia species is virtually non-existent. Given the current endangered state of Butia species, it is urgent that researchers pursue updated genomic technologies to invest in in-depth characterizations of the genetic diversity and structure of jelly palms. The current state of population fragmentation urges effective measures toward their conservation.

4.
Genet Mol Biol ; 46(3 Suppl 1): e20230142, 2023.
Article in English | MEDLINE | ID: mdl-38048778

ABSTRACT

The ALOG gene family, which was named after its earliest identified members ( Arabidopsis LSH1 and Oryza G1), encodes a class of transcription factors (TF) characterized by the presence of a highly conserved ALOG domain. These proteins are found in various plant species playing regulatory roles in plant growth, development, and morphological diversification of inflorescence. The functional characterization of these genes in some plant species has demonstrated their involvement in floral architecture. In this study, we used a genome-wide and phylogenetic approach to gain insights into plants' origin, diversification, and functional aspects of the ALOG gene family. In total, 648 ALOG homologous genes were identified in 77 Viridiplantae species, and their evolutionary relationships were inferred using maximum likelihood phylogenetic analyses. Our results suggested that the ALOG gene family underwent several rounds of gene duplication and diversification during angiosperm evolution. Furthermore, we found three functional orthologous groups in Solanaceae species. The study provides insights into the evolutionary history and functional diversification of the ALOG gene family, which could aid in understanding the mechanisms underlying floral architecture in angiosperms.

5.
Genet Mol Biol ; 46(3 Suppl 1): e20230165, 2023.
Article in English | MEDLINE | ID: mdl-37948505

ABSTRACT

Sapajus libidinosus members of the Pedra Furada group, living in the Serra da Capivara National Park, use stone tools in a wider variety of behaviors than any other living animal, except humans. To rescue the evolutionary history of the Caatinga S. libidinosus and identify factors that may have contributed to the emergence and maintenance of their tool-use culture, we conducted fieldwork seasons to obtain biological samples of these capuchin monkeys. UsingCYTBsequences, we show a discrete but constant population growth from the beginning of the Holocene to the present, overlapping the emergence of the Caatinga biome. Our habitat suitability reconstruction reports the presence of plants whose hard fruits, seeds, or roots are processed by capuchins using tools. TheS. libidinosusindividuals in the Caatinga were capable of dynamically developing and maintaining their autochthonous culture thanks to: a) cognitive capacity to generate and execute innovation under selective pressure; b) tolerance favoring learning and cultural inheritance; c) an unknown genetic repertoire that underpins the adaptive traits; d) a high degree of terrestriality; e) presence and abundance of natural resources, which makes some places "hot spots" for innovation, and cultural diversification within a relatively short time.

6.
Genet Mol Biol ; 45(4): e20210411, 2022.
Article in English | MEDLINE | ID: mdl-36537743

ABSTRACT

Phytoene synthase (PSY) is a crucial enzyme required for carotenoid biosynthesis, encoded by a gene family conserved in carotenoid-producing organisms. This gene family is diversified in angiosperms through distinct duplication events. Understanding diversification patterns and the evolutionary history of the PSY gene family is important for explaining carotenogenesis in different plant tissues. This study identified 351 PSY genes in 166 species, including Viridiplantae, brown and red algae, cyanobacteria, fungi, arthropods, and bacteria. All PSY genes displayed conserved intron/exon organization. Fungi and arthropod PSY sequences were grouped with prokaryote PSY, suggesting the occurrence of horizontal gene transfer. Angiosperm PSY is split into five subgroups. One includes the putative ortholog of PSY3 (Subgroup E3) from eudicots, and the other four subgroups include PSY from both monocots and eudicots (subgroups E1, E2, M1, and M2). Expression profile analysis revealed that PSY genes are constitutively expressed across developmental stages and anatomical parts, except for the eudicot PSY3, with root-specific expression. This study elucidates the molecular evolution and diversification of the PSY gene family, furthering our understanding of variations in carotenogenesis.

7.
Genet Mol Biol ; 45(1): e20210191, 2022.
Article in English | MEDLINE | ID: mdl-35088818

ABSTRACT

Myrtaceae is a large and species-rich family of woody eudicots, with prevalent distribution in the Southern Hemisphere. Classification and taxonomy of species belonging to this family is quite challenging, sometimes with difficulty in species identification and producing phylogenies with low support for species relationships. Most of the current knowledge comes from few molecular markers, such as plastid genes and intergenic regions, which can be difficult to handle and produce conflicting results. Based on plastid protein-coding sequences and nuclear markers, we present a topology for the phylogenetic relationships among Myrtaceae tribes. Our phylogenetic estimate offers a contrasting topology over previous analysis with fewer markers. Plastome phylogeny groups the tribes Syzygieae and Eucalypteae and individual chloroplast genes produce divergent topologies, especially among species within Myrteae tribe, but also in regard to the grouping of Syzygieae and Eucalypteae. Results are consistent and reproducible with both nuclear and organellar datasets. It confronts previous data about the deep nodes of Myrtaceae phylogeny.

8.
Genet Mol Biol ; 46(1 Suppl 1): e20220097, 2022.
Article in English | MEDLINE | ID: mdl-36512712

ABSTRACT

The diversity of diacylglycerol acyltransferases (DGATs) indicates alternative roles for these enzymes in plant metabolism besides triacylglycerol (TAG) biosynthesis. In this work, we functionally characterized castor bean (Ricinus communis L.) DGATs assessing their subcellular localization, expression in seeds, capacity to restore triacylglycerol (TAG) biosynthesis in mutant yeast and evaluating whether they provide tolerance over free fatty acids (FFA) in sensitive yeast. RcDGAT3 displayed a distinct subcellular localization, located in vesicles outside the endoplasmic reticulum (ER) in most leaf epidermal cells. This enzyme was unable to restore TAG biosynthesis in mutant yeast; however, it was able to outperform other DGATs providing higher tolerance over FFA. RcDAcTA subcellular localization was associated with the ER membranes, resembling RcDGAT1 and RcDGAT2, but it failed to rescue the long-chain TAG biosynthesis in mutant yeast, even with fatty acid supplementation. Besides TAG biosynthesis, our results suggest that RcDGAT3 might have alternative functions and roles in lipid metabolism.

9.
Planta ; 251(5): 94, 2020 Apr 06.
Article in English | MEDLINE | ID: mdl-32253515

ABSTRACT

MAIN CONCLUSION: The MIR gene is not an Oryza sativa orphan gene, but an Oryza genus-specific gene that evolved before AA lineage speciation by a complex origination process. Rice (Oryza sativa L.) is a model species and an economically relevant crop. The Oryza genus comprises 25 species, with genomic data available for several Oryza species, making it a model for genetics and evolution. The Mitochondrial Iron-Regulated (MIR) gene was previously implicated in the O. sativa Fe deficiency response, and was considered an orphan gene present only in rice. Here we show that MIR is also found in other Oryza species that belong to the Oryza sativa complex, which have AA genome type and constitute the primary gene pool for O. sativa breeding. Our data suggest that MIR originated in a stepwise process, in which sequences derived from an exon fragment of the raffinose synthase gene were pseudogenized into non-coding, which in turn originated the MIR gene de novo. All species with a putative functional MIR gene conserve their regulation by Fe deficiency, with the exception of Oryza barthii. In O. barthii, the MIR coding sequence was translocated to a different chromosomal position and separated from its regulatory region, leading to a lack of Fe deficiency responsiveness. Moreover, the MIR co-expression subnetwork cluster in O. sativa is responsive to Fe deficiency, evidencing the importance of the newly originated gene in Fe uptake. This work establishes that MIR is not an orphan gene as previously proposed, but a de novo originated gene within the genus Oryza. We also showed that MIR is undergoing genomic changes in one species (O. barthii), with an impact on Fe deficiency response.


Subject(s)
Gene Expression Regulation, Plant/genetics , Iron/metabolism , Oryza/genetics , Plant Proteins/metabolism , Crops, Agricultural , Iron Deficiencies , Mitochondria/metabolism , Oryza/metabolism , Plant Proteins/genetics , Species Specificity
10.
Mol Biol Rep ; 47(2): 1033-1043, 2020 Feb.
Article in English | MEDLINE | ID: mdl-31749121

ABSTRACT

Eugenia uniflora is an Atlantic Forest native species, occurring in contrasting edaphoclimatic environments. The identification of genes involved in response to abiotic factors is very relevant to help in understanding the processes of local adaptation. 1-Pyrroline-5-carboxylate synthetase (P5CS) is one interesting gene to study in this species since it encodes a key enzyme of proline biosynthesis, which is an osmoprotectant during abiotic stress. Applying in silico analysis, we identified one P5CS gene sequence of E. uniflora (EuniP5CS). Phylogenetic analysis, as well as, gene and protein structure investigation, revealed that EuniP5CS is a member of P5CS gene family. Plants of E. uniflora from two distinct environments (restinga and riparian forest) presented differences in the proline accumulation and P5CS expression levels under growth-controlled conditions. Both proline accumulation and gene expression level of EuniP5CS were higher in the genotypes from riparian forest than those from restinga. When these plants were submitted to drought stress, EuniP5CS gene was up-regulated in the plants from restinga, but not in those from riparian forest. These results demonstrated that EuniP5CS is involved in proline biosynthesis in this species and suggest that P5CS gene may be an interesting candidate gene in future studies to understand the processes of local adaptation in E. uniflora.


Subject(s)
Eugenia/genetics , Glutamate-5-Semialdehyde Dehydrogenase/genetics , Multienzyme Complexes/genetics , Phosphotransferases (Alcohol Group Acceptor)/genetics , Aldehyde Dehydrogenase/genetics , Aldehyde Dehydrogenase/metabolism , Droughts , Eugenia/metabolism , Gene Expression Regulation, Plant/genetics , Glutamate-5-Semialdehyde Dehydrogenase/metabolism , Ligases/metabolism , Multienzyme Complexes/metabolism , Phosphotransferases (Alcohol Group Acceptor)/metabolism , Phylogeny , Plants/metabolism , Proline/biosynthesis , Pyrroles/metabolism , Stress, Physiological/genetics
11.
Genet Mol Biol ; 43(3): 20200080, 2020 Jul 24.
Article in English | MEDLINE | ID: mdl-32706846

ABSTRACT

- Growth Regulating Factors (GRFs) comprise a transcription factor family with important functions in plant growth and development. They are characterized by the presence of QLQ and WRC domains, responsible for interaction with proteins and DNA, respectively. The QLQ domain is named due to the similarity to a protein interaction domain found in the SWI2/SNF2 chromatin remodeling complex. Despite the occurrence of the QLQ domain in both families, the divergence between them had not been further explored. Here, we show evidence for GRF origin and determined its diversification in angiosperm species. Phylogenetic analysis revealed 11 well-supported groups of GRFs in flowering plants. These groups were supported by gene structure, synteny, and protein domain composition. Synteny and phylogenetic analyses allowed us to propose different sets of probable orthologs in the groups. Besides, our results, together with functional data previously published, allowed us to suggest candidate genes for engineering agronomic traits. In addition, we propose that the QLQ domain of GRF genes evolved from the eukaryotic SNF2 QLQ domain, most likely by a duplication event in the common ancestor of the Charophytes and land plants. Altogether, our results are important for advancing the origin and evolution of the GRF family in Streptophyta.

12.
Mol Genet Genomics ; 294(5): 1137-1157, 2019 Oct.
Article in English | MEDLINE | ID: mdl-31030277

ABSTRACT

Osmotin is an important multifunctional protein related to plant stress responses and is classified into the thaumatin-like protein (TLP) family. Using genome-wide and phylogenetic approaches, we investigated osmotin origin and diversification across plant TLP evolution. Genomic and protein in silico analysis tools were also accessed and considered for the study conclusions. Phylogenetic analysis including a total of 722 sequences from 32 Viridiplantae species allowed the identification of an osmotin group that includes all previously characterized osmotins. Based on the phylogenetic tree results, it is evident that the osmotin group emerged from spermatophytes. Phylogenetic separation and gene expansion could be accounted for by an exclusive motif composition and organization that emerged and was maintained following tandem and block duplications as well as natural selection. The TLP family conserved residues and structures that were also identified in the sequences of the osmotin group, thus suggesting their maintenance for defense responses. The gene expression of Arabidopsis and rice putative osmotins reinforces its roles during stress response.


Subject(s)
Multigene Family/genetics , Plant Proteins/genetics , Amino Acid Sequence , Arabidopsis/genetics , Evolution, Molecular , Gene Expression/genetics , Genome, Plant/genetics , Genome-Wide Association Study/methods , Oryza/genetics , Phylogeny
13.
Genet Mol Biol ; 41(1 suppl 1): 355-370, 2018.
Article in English | MEDLINE | ID: mdl-29583156

ABSTRACT

sn-Glycerol-3-phosphate 1-O-acyltransferase (GPAT) is an important enzyme that catalyzes the transfer of an acyl group from acyl-CoA or acyl-ACP to the sn-1 or sn-2 position of sn-glycerol-3-phosphate (G3P) to generate lysophosphatidic acids (LPAs). The functional studies of GPAT in plants demonstrated its importance in controlling storage and membrane lipid. Identifying genes encoding GPAT in a variety of plant species is crucial to understand their involvement in different metabolic pathways and physiological functions. Here, we performed genome-wide and evolutionary analyses of GPATs in plants. GPAT genes were identified in all algae and plants studied. The phylogenetic analysis showed that these genes group into three main clades. While clades I (GPAT9) and II (soluble GPAT) include GPATs from algae and plants, clade III (GPAT1-8) includes GPATs specific from plants that are involved in the biosynthesis of cutin or suberin. Gene organization and the expression pattern of GPATs in plants corroborate with clade formation in the phylogeny, suggesting that the evolutionary patterns is reflected in their functionality. Overall, our results provide important insights into the evolution of the plant GPATs and allowed us to explore the evolutionary mechanism underlying the functional diversification among these genes.

14.
Mol Phylogenet Evol ; 96: 55-69, 2016 Mar.
Article in English | MEDLINE | ID: mdl-26721558

ABSTRACT

Lysophosphatidic acid acyltransferases (LPAATs) perform an essential cellular function by controlling the production of phosphatidic acid (PA), a key intermediate in the synthesis of membrane, signaling and storage lipids. Although LPAATs have been extensively explored by functional and biotechnological studies, little is known about their molecular evolution and diversification. We performed a genome-wide analysis using data from several plants and animals, as well as other eukaryotic and prokaryotic species, to identify LPAAT genes and analyze their evolutionary history. We used phylogenetic and molecular evolution analysis to test the hypothesis of distinct origins for these genes. The reconstructed phylogeny supported the ancient origin of some isoforms (plant LPAAT1 and LPAATB; animal AGPAAT1/2), while others emerged more recently (plant LPAAT2/3/4/5; AGPAAT3/4/5/8). Additionally, the hypothesis of endosymbiotic origin of the plastidic isoform LPAAT1 was confirmed. LPAAT genes from plants and animals mainly experienced strong purifying selection pressures with limited functional divergence after the species-specific duplications. Gene expression analyses of LPAAT isoforms in model plants demonstrated distinct LPAAT expression patterns in these organisms. The results showed that distinct origins followed by diversification of the LPAAT genes shaped the evolution of TAG biosynthesis. The expression pattern of individual genes may be responsible for adaptation into multiple ecological niches.


Subject(s)
Acyltransferases/genetics , Evolution, Molecular , Phylogeny , Animals , Eukaryotic Cells/enzymology , Gene Expression Regulation, Enzymologic , Plants/enzymology , Plants/genetics , Prokaryotic Cells/enzymology , Protein Isoforms/genetics , Selection, Genetic , Species Specificity
15.
Mol Phylogenet Evol ; 99: 225-234, 2016 06.
Article in English | MEDLINE | ID: mdl-27033948

ABSTRACT

The E2 promoter binding factor (E2F) proteins are present in almost all eukaryotic organisms and are essential to control several processes, such as the cell cycle progression, cell division, DNA replication, and apoptosis. The E2F family comprises two different types of proteins: the typical E2Fs and atypical E2Fs, which differ structurally and have specific functions. The E2F gene family was described for the first time in plants in 1999, and since then several studies have focused on the functional aspects, but the evolutionary history of this gene family is still unknown. Here, we investigated the evolutionary history of the E2F gene family in plants. Our findings suggest that E2F proteins arose early after the emergence of the eukaryotic species, while DEL proteins appear to have arisen before the metazoan and plants origin probably through a partial duplication of an ancient E2F protein. Our data also suggest that E2Fs activators and repressors appeared twice during evolution, once in the metazoan lineage and again in the embryophyte lineage.


Subject(s)
DNA-Binding Proteins/genetics , E2F Transcription Factors/genetics , Evolution, Molecular , Plant Proteins/genetics , Viridiplantae/genetics , Bayes Theorem , DNA-Binding Proteins/classification , Databases, Protein , E2F Transcription Factors/classification , Phylogeny , Plant Proteins/classification , Promoter Regions, Genetic
16.
Genet Mol Biol ; 39(4): 524-538, 2016.
Article in English | MEDLINE | ID: mdl-27706370

ABSTRACT

Since the first diacylglycerol acyltransferase (DGAT) gene was characterized in plants, a number of studies have focused on understanding the role of DGAT activity in plant triacylglycerol (TAG) biosynthesis. DGAT enzyme is essential in controlling TAGs synthesis and is encoded by different genes. DGAT1 and DGAT2 are the two major types of DGATs and have been well characterized in many plants. On the other hand, the DGAT3 and WS/DGAT have received less attention. In this study, we present the first general view of the presence of putative DGAT3 and WS/DGAT in several plant species and report on the diversity and evolution of these genes and its relationships with the two main DGAT genes (DGAT1 and DGAT2). According to our analyses DGAT1, DGAT2, DGAT3 and WS/DGAT are very divergent genes and may have distinct origin in plants. They also present divergent expression patterns in different organs and tissues. The maintenance of several types of genes encoding DGAT enzymes in plants demonstrates the importance of DGAT activity for TAG biosynthesis. Evolutionary history studies of DGATs coupled with their expression patterns help us to decipher their functional role in plants, helping to drive future biotechnological studies.

17.
Genomics ; 103(5-6): 380-7, 2014.
Article in English | MEDLINE | ID: mdl-24704532

ABSTRACT

NF-Y is a conserved oligomeric transcription factor found in all eukaryotes. In plants, this regulator evolved with a broad diversification of the genes coding for its three subunits (NF-YA, NF-YB and NF-YC). The NF-YB members can be divided into Leafy Cotyledon1 (LEC1) and non-LEC1 types. Here we presented a comparative genomic study using phylogenetic analyses to validate an evolutionary model for the origin of LEC-type genes in plants and their emergence from non-LEC1-type genes. We identified LEC1-type members in all vascular plant genomes, but not in amoebozoa, algae, fungi, metazoa and non-vascular plant representatives, which present exclusively non-LEC1-type genes as constituents of their NF-YB subunits. The non-synonymous to synonymous nucleotide substitution rates (Ka/Ks) between LEC1 and non-LEC1-type genes indicate the presence of positive selection acting on LEC1-type members to the fixation of LEC1-specific amino acid residues. The phylogenetic analyses demonstrated that plant LEC1-type genes are evolutionary divergent from the non-LEC1-type genes of plants, fungi, amoebozoa, algae and animals. Our results point to a scenario in which LEC1-type genes have originated in vascular plants after gene expansion in plants. We suggest that processes of neofunctionalization and/or subfunctionalization were responsible for the emergence of a versatile role for LEC1-type genes in vascular plants, especially in seed plants. LEC1-type genes besides being phylogenetic divergent also present different expression profile when compared with non-LEC1-type genes. Altogether, our data provide new insights about the LEC1 and non-LEC1 evolutionary relationship during the vascular plant evolution.


Subject(s)
Arabidopsis Proteins/genetics , CCAAT-Enhancer-Binding Proteins/genetics , Evolution, Molecular , Plants/genetics , Amino Acid Sequence , Arabidopsis Proteins/chemistry , Bayes Theorem , CCAAT-Enhancer-Binding Proteins/chemistry , Consensus Sequence , Genes, Plant , Models, Genetic , Molecular Sequence Data , Phylogeny
18.
BMC Plant Biol ; 14: 236, 2014 Sep 10.
Article in English | MEDLINE | ID: mdl-25201117

ABSTRACT

BACKGROUND: Many previous studies have shown that soybean WRKY transcription factors are involved in the plant response to biotic and abiotic stresses. Phakopsora pachyrhizi is the causal agent of Asian Soybean Rust, one of the most important soybean diseases. There are evidences that WRKYs are involved in the resistance of some soybean genotypes against that fungus. The number of WRKY genes already annotated in soybean genome was underrepresented. In the present study, a genome-wide annotation of the soybean WRKY family was carried out and members involved in the response to P. pachyrhizi were identified. RESULTS: As a result of a soybean genomic databases search, 182 WRKY-encoding genes were annotated and 33 putative pseudogenes identified. Genes involved in the response to P. pachyrhizi infection were identified using superSAGE, RNA-Seq of microdissected lesions and microarray experiments. Seventy-five genes were differentially expressed during fungal infection. The expression of eight WRKY genes was validated by RT-qPCR. The expression of these genes in a resistant genotype was earlier and/or stronger compared with a susceptible genotype in response to P. pachyrhizi infection. Soybean somatic embryos were transformed in order to overexpress or silence WRKY genes. Embryos overexpressing a WRKY gene were obtained, but they were unable to convert into plants. When infected with P. pachyrhizi, the leaves of the silenced transgenic line showed a higher number of lesions than the wild-type plants. CONCLUSIONS: The present study reports a genome-wide annotation of soybean WRKY family. The participation of some members in response to P. pachyrhizi infection was demonstrated. The results contribute to the elucidation of gene function and suggest the manipulation of WRKYs as a strategy to increase fungal resistance in soybean plants.


Subject(s)
Basidiomycota/physiology , Gene Expression Regulation, Plant , Genome, Plant/genetics , Glycine max/physiology , Host-Pathogen Interactions , Plant Diseases/immunology , Amino Acid Sequence , Consensus Sequence , Disease Susceptibility , Gene Expression Profiling , Gene Silencing , Molecular Sequence Annotation , Molecular Sequence Data , Plant Diseases/microbiology , Plant Leaves/genetics , Plant Leaves/immunology , Plant Leaves/microbiology , Plant Leaves/physiology , Plant Proteins/genetics , Plant Proteins/metabolism , Plants, Genetically Modified , Regeneration , Sequence Alignment , Glycine max/genetics , Glycine max/immunology , Glycine max/microbiology , Transcription Factors/genetics , Transcription Factors/metabolism , Transformation, Genetic
19.
Front Mol Biosci ; 11: 1341684, 2024.
Article in English | MEDLINE | ID: mdl-38693917

ABSTRACT

The accumulation of proline in response to the most diverse types of stress is a widespread defense mechanism. In prokaryotes, fungi, and certain unicellular eukaryotes (green algae), the first two reactions of proline biosynthesis occur through two distinct enzymes, γ-glutamyl kinase (GK E.C. 2.7.2.11) and γ-glutamyl phosphate reductase (GPR E.C. 1.2.1.41), encoded by two different genes, ProB and ProA, respectively. Plants, animals, and a few unicellular eukaryotes carry out these reactions through a single bifunctional enzyme, the Δ1-pyrroline-5-carboxylate synthase (P5CS), which has the GK and GPR domains fused. To better understand the origin and diversification of the P5CS gene, we use a robust phylogenetic approach with a broad sampling of the P5CS, ProB and ProA genes, including species from all three domains of life. Our results suggest that the collected P5CS genes have arisen from a single fusion event between the ProA and ProB gene paralogs. A peculiar fusion event occurred in an ancestral eukaryotic lineage and was spread to other lineages through horizontal gene transfer. As for the diversification of this gene family, the phylogeny of the P5CS gene in plants shows that there have been multiple independent processes of duplication and loss of this gene, with the duplications being related to old polyploidy events.

20.
Int J Mol Sci ; 14(7): 13796-807, 2013 Jul 03.
Article in English | MEDLINE | ID: mdl-23823801

ABSTRACT

Changes in flower morphology may influence the frequency and specificity of animal visitors. In Petunia (Solanaceae), adaptation to different pollinators is one of the factors leading to species diversification within the genus. This study provides evidence that differential expression patterns of MAWEWEST (MAW) homologs in different Petunia species may be associated with adaptive changes in floral morphology. The Petunia × hybrida MAW gene belongs to the WOX (WUSCHEL-related homeobox) transcription factor family and has been identified as a controller of petal fusion during corolla formation. We analyzed the expression patterns of P. inflata and P. axillaris MAW orthologs (PiMAW and PaMAW, respectively) by reverse transcriptase polymerase chain reaction (RT-PCR), reverse transcription-quantitative PCR (qRT-PCR) and in situ hybridization in different tissues and different developmental stages of flowers in both species. The spatial expression patterns of PiMAW and PaMAW were similar in P. inflata and P. axillaris. Nevertheless, PaMAW expression level in P. axillaris was higher during the late bud development stage as compared to PiMAW in P. inflata. This work represents an expansion of petunia developmental research to wild accessions.


Subject(s)
Flowers/growth & development , Gene Expression Regulation, Plant/physiology , Homeodomain Proteins/biosynthesis , Petunia/metabolism , Plant Proteins/biosynthesis , Flowers/genetics , Homeodomain Proteins/genetics , Petunia/genetics , Plant Proteins/genetics
SELECTION OF CITATIONS
SEARCH DETAIL