Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 65
Filter
1.
Nat Immunol ; 14(4): 372-9, 2013 Apr.
Article in English | MEDLINE | ID: mdl-23475182

ABSTRACT

Intestinal Peyer's patches are essential lymphoid organs for the generation of T cell-dependent immunoglobulin A (IgA) for gut homeostasis. Through the use of interleukin 17 (IL-17) fate-reporter mice, we found here that endogenous cells of the TH17 subset of helper T cells in lymphoid organs of naive mice 'preferentially' homed to the intestines and were maintained independently of IL-23. In Peyer's patches, such TH17 cells acquired a follicular helper T cell (TFH cell) phenotype and induced the development of IgA-producing germinal center B cells. Mice deficient in TH17 cells failed to generate antigen-specific IgA responses, which provides evidence that TH17 cells are the crucial subset required for the production of high-affinity T cell-dependent IgA.


Subject(s)
Immunoglobulin A/immunology , Peyer's Patches/immunology , Th17 Cells/immunology , Animals , B-Lymphocytes/immunology , B-Lymphocytes/metabolism , Female , Germinal Center/cytology , Germinal Center/immunology , Immunoglobulin A/biosynthesis , Immunoglobulin A, Secretory/immunology , Immunoglobulin Class Switching/genetics , Immunoglobulin Class Switching/immunology , Interleukin-23/genetics , Interleukin-23/immunology , Intestinal Mucosa/immunology , Intestinal Mucosa/metabolism , Mice , Mice, Knockout , Peyer's Patches/cytology , T-Lymphocytes, Helper-Inducer/immunology , T-Lymphocytes, Helper-Inducer/metabolism
2.
Immunity ; 45(5): 1078-1092, 2016 11 15.
Article in English | MEDLINE | ID: mdl-27851911

ABSTRACT

Th17 cells are most abundant in the gut, where their presence depends on the intestinal microbiota. Here, we examined whether intestinal Th17 cells contribute to extra-intestinal Th17 responses in autoimmune kidney disease. We found high frequencies of Th17 cells in the kidneys of patients with antineutrophil cytoplasmatic antibody (ANCA)-associated glomerulonephritis. We utilized photoconversion of intestinal cells in Kaede mice to track intestinal T cell mobilization upon glomerulonephritis induction, and we found that Th17 cells egress from the gut in a S1P-receptor-1-dependent fashion and subsequently migrate to the kidney via the CCL20/CCR6 axis. Depletion of intestinal Th17 cells in germ-free and antibiotic-treated mice ameliorated renal disease, whereas expansion of these cells upon Citrobacter rodentium infection exacerbated pathology. Thus, in some autoimmune settings, intestinal Th17 cells migrate into target organs, where they contribute to pathology. Targeting the intestinal Th17 cell "reservoir" may present a therapeutic strategy for these autoimmune disorders.


Subject(s)
Autoimmune Diseases/immunology , Chemotaxis, Leukocyte/immunology , Glomerulonephritis/immunology , Receptors, Lysosphingolipid/immunology , Th17 Cells/immunology , Animals , Citrobacter rodentium , Disease Models, Animal , Enterobacteriaceae Infections/immunology , Flow Cytometry , Humans , Intestines/immunology , Kidney/immunology , Mice , Mice, Inbred C57BL , Mice, Transgenic , Real-Time Polymerase Chain Reaction , Sphingosine-1-Phosphate Receptors
3.
Eur J Immunol ; 53(12): e2350483, 2023 12.
Article in English | MEDLINE | ID: mdl-37740567

ABSTRACT

Mucosal-associated invariant T (MAIT) cells are T cells that express a semi-invariant αß T-cell receptor (TCR), recognizing non-peptide antigens, such as microbial-derived vitamin B2 metabolites, presented by the nonpolymorphic MHC class I related-1 molecule. Like NKT cells and γδT cells, MAIT cells belong to the group of innate-like T cells that combine properties of the innate and adaptive immune systems. They account for up to 10% of the blood T-cell population in humans and are particularly abundant at mucosal sites. Beyond the emerging role of MAIT cells in antibacterial and antiviral defenses, increasing evidence suggests additional functions in noninfectious settings, including immune-mediated inflammatory diseases and tissue repair. Here, we discuss recent advances in the understanding of MAIT cell functions in sterile tissue inflammation, with a particular focus on autoimmunity, chronic inflammatory diseases, and tissue repair.


Subject(s)
Mucosal-Associated Invariant T Cells , Humans , Receptors, Antigen, T-Cell/metabolism , Histocompatibility Antigens Class I/metabolism , Inflammation , Autoimmunity
4.
PLoS Pathog ; 18(4): e1010430, 2022 04.
Article in English | MEDLINE | ID: mdl-35446923

ABSTRACT

Staphylococcus aureus is frequently detected in patients with sepsis and thus represents a major health burden worldwide. CD4+ T helper cells are involved in the immune response to S. aureus by supporting antibody production and phagocytosis. In particular, Th1 and Th17 cells secreting IFN-γ and IL-17A, are involved in the control of systemic S. aureus infections in humans and mice. To investigate the role of T cells in severe S. aureus infections, we established a mouse sepsis model in which the kidney was identified to be the organ with the highest bacterial load and abundance of Th17 cells. In this model, IL-17A but not IFN-γ was required for bacterial control. Using Il17aCre × R26YFP mice we could show that Th17 fate cells produce Th17 and Th1 cytokines, indicating a high degree of Th17 cell plasticity. Single cell RNA-sequencing of renal Th17 fate cells uncovered their heterogeneity and identified a cluster with a Th1 expression profile within the Th17 cell population, which was absent in mice with T-bet/Tbx21-deficiency in Th17 cells (Il17aCre x R26eYFP x Tbx21-flox). Blocking Th17 to Th1 transdifferentiation in Th17 fate cells in these mice resulted in increased S. aureus tissue loads. In summary, we highlight the impact of Th17 cells in controlling systemic S. aureus infections and show that T-bet expression by Th17 cells is required for bacterial clearance. While targeting the Th17 cell immune response is an important therapeutic option in autoimmunity, silencing Th17 cells might have detrimental effects in bacterial infections.


Subject(s)
Sepsis , Staphylococcal Infections , T-Box Domain Proteins/metabolism , Animals , Cell Plasticity , Humans , Interleukin-17 , Mice , Mice, Inbred C57BL , Mice, Knockout , Phenotype , Staphylococcus aureus , Th1 Cells , Th17 Cells
5.
Nat Immunol ; 13(7): 637-41, 2012 Jun 19.
Article in English | MEDLINE | ID: mdl-22713829

ABSTRACT

Although the cytokine interleukin 9 (IL-9) was discovered decades ago, it remains one of the most enigmatic cytokines identified so far, in particular because its functional activities remain far from clear. Breakthroughs made through the use of IL-9 reporter mice have allowed the identification of cell types that produce IL-9 in vivo and, contrary to expectations based on previous results obtained in vitro, it is not T cells but instead a previously unknown type of innate lymphoid cell, called the 'ILC2 cell', that is the main cell type that expresses IL-9 in vivo. In this perspective, we put forward a hypothesis about the potential biological functions of IL-9 in the immune system and beyond.


Subject(s)
Interleukin-9/immunology , Th2 Cells/immunology , Animals , Cell Survival/immunology , Humans , Mice
6.
J Immunol ; 208(7): 1585-1594, 2022 04 01.
Article in English | MEDLINE | ID: mdl-35296538

ABSTRACT

Innate lymphoid cells (ILCs) that express NK cell receptors (NCRs) and the transcription factor T-bet populate nonlymphoid tissues and are crucial in immune responses against viral infections and malignancies. Recent studies highlighted the heterogeneity of this ILC population and extended their functional spectrum to include important roles in tissue homeostasis and autoimmunity. In this article, we provide detailed profiling of NCR+T-bet+ ILC populations in the murine kidney, identifying conventional NK (cNK) cells and type 1 ILCs (ILC1s) as the two major subsets. Induction of renal inflammation in a mouse model of glomerulonephritis did not substantially influence abundance or phenotype of cNK cells or ILC1s in the kidney. For functional analyses in this model, widely used depletion strategies for total NCR+ ILCs (anti-NK1.1 Ab application) and cNK cells (anti-asialoGM1 serum application) were unreliable tools, because they were accompanied by significant off-target depletion of kidney NKT cells and CD8+ T cells, respectively. However, neither depletion of cNK cells and ILC1s in NKT cell-deficient mice nor specific genetic deletion of cNK cells in Ncr1 Cre/wt × Eomes fl/fl mice altered the clinical course of experimental glomerulonephritis. In summary, we show in this article that cNK cells and ILC1s are dispensable for initiation and progression of immune-mediated glomerular disease and advise caution in the use of standard Ab depletion methods to study NCR+ ILC function in mouse models.


Subject(s)
Glomerulonephritis , Immunity, Innate , Animals , CD8-Positive T-Lymphocytes , Kidney , Killer Cells, Natural , Mice
7.
Z Rheumatol ; 82(7): 587-598, 2023 Sep.
Article in German | MEDLINE | ID: mdl-37266676

ABSTRACT

IgA vasculitis (IgAV) is an immune complex-mediated vasculitis characterized by IgA1-dominant immune deposits in small vessels. It is the most common systemic vasculitis in childhood with a mostly uncomplicated and self-limiting course. Adults are less affected but the course is frequently more complicated and more frequently accompanied by renal involvement. IgAV characteristically manifests itself on the skin with palpable purpura and in joints, the kidneys and the gastrointestinal tract. In cases of incomplete or atypical symptoms a differential diagnostic work-up is required. A number of triggers have been suggested, especially infections and drugs. Disease management is tailored to organ manifestations and the severity of the symptoms. For children, optimized supportive care and targeted symptom relief are usually sufficient. Management of renal and gastrointestinal manifestations follows recommendations for ANCA-associated vasculitis and IgA nephropathy. Treatment options include glucocorticoids and immunosuppressive agents with varying and mostly insufficient evidence.


Subject(s)
Giant Cell Arteritis , Glomerulonephritis, IGA , Granulomatosis with Polyangiitis , IgA Vasculitis , Polyarteritis Nodosa , Adult , Child , Humans , IgA Vasculitis/diagnosis , IgA Vasculitis/drug therapy , Glomerulonephritis, IGA/diagnosis , Glomerulonephritis, IGA/drug therapy , Immunoglobulin A/therapeutic use , Skin , Immunosuppressive Agents/therapeutic use , Polyarteritis Nodosa/complications , Giant Cell Arteritis/drug therapy , Granulomatosis with Polyangiitis/complications
8.
PLoS Pathog ; 16(12): e1009121, 2020 12.
Article in English | MEDLINE | ID: mdl-33351862

ABSTRACT

Parasitic helminths are sensed by the immune system via tissue-derived alarmins that promote the initiation of the appropriate type 2 immune responses. Here we establish the nuclear alarmin cytokine IL-33 as a non-redundant trigger of specifically IL-9-driven and mast cell-mediated immunity to the intestinal parasite Strongyloides ratti. Blockade of endogenous IL-33 using a helminth-derived IL-33 inhibitor elevated intestinal parasite burdens in the context of reduced mast cell activation while stabilization of endogenous IL-33 or application of recombinant IL-33 reciprocally reduced intestinal parasite burdens and increased mast cell activation. Using gene-deficient mice, we show that application of IL-33 triggered rapid mast cell-mediated expulsion of parasites directly in the intestine, independent of the adaptive immune system, basophils, eosinophils or Gr-1+ cells but dependent on functional IL-9 receptor and innate lymphoid cells (ILC). Thereby we connect the described axis of IL-33-mediated ILC2 expansion to the rapid initiation of IL-9-mediated and mast cell-driven intestinal anti-helminth immunity.


Subject(s)
Interleukin-33/immunology , Interleukin-9/immunology , Intestinal Diseases, Parasitic/immunology , Lymphocytes/immunology , Mast Cells/immunology , Strongyloidiasis/immunology , Animals , Immunity, Innate/immunology , Intestines/immunology , Intestines/parasitology , Mice , Strongyloides ratti/immunology
9.
J Am Soc Nephrol ; 32(12): 3081-3098, 2021 12.
Article in English | MEDLINE | ID: mdl-35167487

ABSTRACT

BACKGROUND: IL-17A-producing CD4+ T helper (TH17) cells play a critical role in autoimmune and chronic inflammatory diseases, such as crescentic GN. The proinflammatory effects of IL-17 are mediated by the activation of the IL-17RA/IL-17RC complex. Although the expression of these receptors on epithelial and endothelial cells is well characterized, the IL-17 receptor expression pattern and function on hematopoietic cells, e.g., CD4+ T cell subsets, remains to be elucidated. METHODS: Crescentic GN (nephrotoxic nephritis) was induced in IL-17A, IFNγ, and Foxp3 triple-reporter mice for sorting of renal CD4+ T cell subsets and subsequent single-cell RNA sequencing. Moreover, we generated TH17 cell-specific IL-17RA and IL-17RC gene-deficient mice and studied the functional role of IL-17 signaling in TH17 cells in crescentic GN, imiquimod-induced psoriasis, and in the CD4+CD45RBhigh T cell transfer colitis model. RESULTS: We identified a specific expression of the IL-17 receptor A/C complex on CD4+ TH17 cells. Single-cell RNA sequencing of TH17 cells revealed the activation of the IL-17 receptor signaling pathway in experimental crescentic GN. Disruption of the IL-17RC signaling pathway in CD4+ T cells and, most importantly, specifically in CD4+ TH17 cells, potentiates the IL-17 cytokine response and results in an accelerated course of experimental crescentic GN. Comparable results were observed in experimental models of psoriasis and colitis. CONCLUSIONS: Our findings indicate that IL-17 receptor C signaling has a previously unrecognized function in the regulation of CD4+ TH17 cells and in the control of organ-specific autoimmunity and might provide new insights into the development of more efficient anti-TH17 treatment strategies.


Subject(s)
Glomerulonephritis/etiology , Receptors, Interleukin/physiology , Animals , CD4-Positive T-Lymphocytes/immunology , Glomerulonephritis/immunology , Interleukin-17/biosynthesis , Male , Mice , Mice, Inbred C57BL , Psoriasis/etiology , Receptors, Interleukin-17/physiology , Signal Transduction/physiology , Th17 Cells/immunology
10.
Gastroenterology ; 159(4): 1417-1430.e3, 2020 10.
Article in English | MEDLINE | ID: mdl-32585307

ABSTRACT

BACKGROUND & AIMS: Unregulated activity of interleukin (IL) 22 promotes intestinal tumorigenesis in mice. IL22 binds the antagonist IL22 subunit alpha 2 (IL22RA2, also called IL22BP). We studied whether alterations in IL22BP contribute to colorectal carcinogenesis in humans and mice. METHODS: We obtained tumor and nontumor tissues from patients with colorectal cancer (CRC) and measured levels of cytokines by quantitative polymerase chain reaction, flow cytometry, and immunohistochemistry. We measured levels of Il22bp messenger RNA in colon tissues from wild-type, Tnf-/-, Lta-/-, and Ltb-/- mice. Mice were given azoxymethane and dextran sodium sulfate to induce colitis and associated cancer or intracecal injections of MC38 tumor cells. Some mice were given inhibitors of lymphotoxin beta receptor (LTBR). Intestine tissues were analyzed by single-cell sequencing to identify cell sources of lymphotoxin. We performed immunohistochemistry analysis of colon tissue microarrays from patients with CRC (1475 tissue cores, contained tumor and nontumor tissues) and correlated levels of IL22BP with patient survival times. RESULTS: Levels of IL22BP were decreased in human colorectal tumors, compared with nontumor tissues, and correlated with levels of lymphotoxin. LTBR signaling was required for expression of IL22BP in colon tissues of mice. Wild-type mice given LTBR inhibitors had an increased tumor burden in both models, but LTBR inhibitors did not increase tumor growth in Il22bp-/- mice. Lymphotoxin directly induced expression of IL22BP in cultured human monocyte-derived dendritic cells via activation of nuclear factor κB. Reduced levels of IL22BP in colorectal tumor tissues were associated with shorter survival times of patients with CRC. CONCLUSIONS: Lymphotoxin signaling regulates expression of IL22BP in colon; levels of IL22BP are reduced in human colorectal tumors, associated with shorter survival times. LTBR signaling regulates expression of IL22BP in colon tumors in mice and cultured human dendritic cells. Patients with colorectal tumors that express low levels of IL22BP might benefit from treatment with an IL22 antagonist.


Subject(s)
Colorectal Neoplasms/metabolism , Lymphotoxin-alpha/metabolism , Receptors, Interleukin/metabolism , Aged , Animals , Colorectal Neoplasms/mortality , Colorectal Neoplasms/pathology , Disease Models, Animal , Female , Humans , Male , Mice , RNA, Messenger/metabolism , Receptors, Interleukin/genetics , Survival Rate
11.
Cell Tissue Res ; 385(2): 281-292, 2021 Aug.
Article in English | MEDLINE | ID: mdl-33598825

ABSTRACT

CD4+ T cells are key drivers of autoimmune diseases, including crescentic GN. Many effector mechanisms employed by T cells to mediate renal damage and repair, such as local cytokine production, depend on their presence at the site of inflammation. Therefore, the mechanisms regulating the renal CD4+ T cell infiltrate are of central importance. From a conceptual point of view, there are four distinct factors that can regulate the abundance of T cells in the kidney: (1) T cell infiltration, (2) T cell proliferation, (3) T cell death and (4) T cell retention/egress. While a substantial amount of data on the recruitment of T cells to the kidneys in crescentic GN have accumulated over the last decade, the roles of T cell proliferation and death in the kidney in crescentic GN is less well characterized. However, the findings from the data available so far do not indicate a major role of these processes. More importantly, the molecular mechanisms underlying both egress and retention of T cells from/in peripheral tissues, such as the kidney, are unknown. Here, we review the current knowledge of mechanisms and functions of T cell migration in renal autoimmune diseases with a special focus on chemokines and their receptors.


Subject(s)
Autoimmune Diseases/immunology , Kidney Diseases/immunology , Kidney/pathology , T-Lymphocytes, Helper-Inducer/immunology , Animals , Humans
12.
Internist (Berl) ; 62(7): 718-724, 2021 Jul.
Article in German | MEDLINE | ID: mdl-34106294

ABSTRACT

BACKGROUND: The coronavirus disease 2019 (COVID-19) pandemic has also resulted in substantial challenges for nephrology worldwide. Patients with chronic kidney diseases are a particularly vulnerable patient group in this context and in severe courses of COVID-19 the kidneys are most frequently affected by organ failure after the lungs. MATERIAL AND METHODS: In order to reliably evaluate the prevalence and mortality of dialysis patients in Germany with respect to COVID-19, during the first wave in spring 2020 the German Society of Nephrology implemented a registry for dialysis patients. Weekly data on the number and course of dialysis patients affected by COVID-19 were recorded and analyzed. RESULTS: The prevalence of COVID-19 in dialysis patients in Germany developed in two waves, similar to the course of the pandemic in the general population. In spring the prevalence in dialysis patients reached 1.4% and considerably declined during the summer. In December during the second wave of the pandemic the prevalence again rose to 1.9%, despite comprehensively implemented hygiene measures in dialysis centers. Similar to other industrial nations, dialysis patients in Germany also showed a very high lethality of COVID-19 of up to 20%. CONCLUSION: Immediate consequences for hygiene measures in dialysis institutions as well as vaccination strategies and vaccination prioritization for this patient group and the personnel treating them can be derived from the high mortality in dialysis patients. A consequence of the frequent involvement of the kidneys during infections with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in patients who had not previously suffered from advanced kidney disease should be the consistent nephrological aftercare.


Subject(s)
COVID-19 , Nephrology , Germany/epidemiology , Humans , Pandemics/prevention & control , Renal Dialysis , SARS-CoV-2
13.
Kidney Int ; 98(3): 615-629, 2020 09.
Article in English | MEDLINE | ID: mdl-32446933

ABSTRACT

A wide spectrum of immunological functions has been attributed to Interleukin 9 (IL-9), including effects on the survival and proliferation of immune and parenchymal cells. In recent years, emerging evidence suggests that IL-9 expression can promote tissue repair in inflammatory conditions. However, data about the involvement of IL-9 in kidney tissue protection is very limited. Here, we investigated the role of IL-9 in Adriamycin-induced nephropathy (AN), a mouse model for proteinuric chronic kidney disease. Compared to wild type mice, IL-9 knockout (Il9-/-) mice with AN displayed accelerated development of proteinuria, aggravated glomerulosclerosis and deterioration of kidney function. At an early stage of disease, the Il9-/- mice already displayed a higher extent of glomerular podocyte injury and loss of podocyte number compared to wild type mice. In the kidney, T cells and innate lymphoid cells produced IL-9. However, selective deficiency of IL-9 in the innate immune system in Il9-/-Rag2-/- mice that lack T and B cells did not alter the outcome of AN, indicating that IL-9 derived from the adaptive immune system was the major driver of tissue protection in this model. Mechanistically, we could show that podocytes expressed the IL-9 receptor in vivo and that IL-9 signaling protects podocytes from Adriamycin-induced apoptosis in vitro. Finally, in vivo treatment with IL-9 effectively protected wild type mice from glomerulosclerosis and kidney failure in the AN model. The detection of increased serum IL-9 levels in patients with primary focal and segmental glomerulosclerosis further suggests that IL-9 production is induced by glomerular injury in humans. Thus, IL-9 confers protection against experimental glomerulosclerosis, identifying the IL-9 pathway as a potential therapeutic target in proteinuric chronic kidney disease.


Subject(s)
Glomerulosclerosis, Focal Segmental , Podocytes , Animals , Doxorubicin/toxicity , Glomerulosclerosis, Focal Segmental/chemically induced , Glomerulosclerosis, Focal Segmental/genetics , Glomerulosclerosis, Focal Segmental/prevention & control , Humans , Immunity, Innate , Interleukin-9 , Lymphocytes , Mice , Proteinuria/chemically induced , Proteinuria/prevention & control
14.
Am J Physiol Renal Physiol ; 316(4): F712-F722, 2019 04 01.
Article in English | MEDLINE | ID: mdl-30724106

ABSTRACT

In recent years, the cytokine interleukin (IL)-22 attracted considerable attention due to its important immunoregulatory function in barrier tissues, such as the gut, lung, and skin. Although a regenerative role of IL-22 in renal tubular damage has been demonstrated, the role of IL-22 in the immunopathogenesis of glomerular injury is still unknown. Here, we demonstrate that the IL-22 receptor is expressed in the glomerular compartment of the kidney and that IL-22 expression increases in the renal cortex after induction of glomerular injury in a mouse model for crescentic glomerulonephritis (cGN, nephrotoxic nephritis). We identified γδ T cells and TH17 cells as major sources for IL-22 in the nephritic kidney. However, neither genetic or antibody-mediated deletion of IL-22 nor genetic deficiency in its endogenous inhibitor IL-22Rα2 (IL-22 binding protein) resulted in substantial phenotypic differences in mice with cGN with respect to crescent formation, tubulointerstitial damage, and kidney function impairment. Similarly, we did not observe significant differences between wild-type or IL-22-deficient mice in a mouse model of secondary focal and segmental glomerulosclerosis (adriamycin-induced nephropathy). As shown previously, we detected concomitant upregulation of IL-17A and IFN-γ production by T cells during the course of cGN, providing alternative cytokine pathways that mediate glomerular injury in this model. In conclusion, we show here that endogenous IL-22 expression is redundant in different forms of glomerular injury, indicating that the IL-22-directed therapies that are being tested in various human diseases might not affect the kidney in patients with glomerular disease.


Subject(s)
Glomerulonephritis/metabolism , Interleukins/metabolism , Animals , Female , Glomerulonephritis/immunology , Glomerulonephritis/pathology , Immunity, Cellular/immunology , Immunity, Humoral/immunology , Interferon-gamma/biosynthesis , Interleukins/genetics , Kidney/pathology , Kidney Cortex/metabolism , Kidney Glomerulus/metabolism , Kidney Tubules/metabolism , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Receptors, Interleukin/metabolism , T-Lymphocytes/metabolism , Interleukin-22
15.
Eur J Immunol ; 48(8): 1364-1375, 2018 08.
Article in English | MEDLINE | ID: mdl-29671873

ABSTRACT

Innate lymphoid cells (ILCs) are important regulators of the immune response and play a crucial role in the restoration of tissue homeostasis after injury. GATA-3+ IL-13- and IL-5-producing group 2 innate lymphoid cells (ILC2s) have been shown to promote tissue repair in barrier organs, but despite extensive research on ILCs in the recent years, their potential role in autoimmune diseases is still incompletely understood. In the present study, we investigate the role of ILC2s in the MRL/MpJ-Faslpr (MRL-lpr) mouse model for severe organ manifestation of systemic lupus erythematosus (SLE). We show that in these MRL-lpr mice, progression of lupus nephritis is accompanied with a reduction of ILC2 abundance in the inflamed renal tissue. Proliferation/survival and cytokine production of kidney-residing ILC2s was suppressed by IFN-γ and, to a lesser extent, by IL-27 which were produced by activated T cells and myeloid cells in the nephritic kidney, respectively. Most importantly, restoration of ILC2 numbers by IL-33-mediated expansion ameliorated lupus nephritis and prevented mortality in MRL-lpr mice. In summary, we show here that development of SLE-like kidney inflammation leads to a downregulation of the renal ILC2 response and identify an ILC2-expanding therapy as a promising treatment approach for autoimmune diseases.


Subject(s)
Interferon-gamma/metabolism , Interleukin-33/metabolism , Interleukins/metabolism , Lupus Erythematosus, Systemic/pathology , Lupus Nephritis/pathology , T-Lymphocytes/immunology , Animals , Cells, Cultured , Down-Regulation , GATA3 Transcription Factor/metabolism , Interleukin-13/metabolism , Interleukin-5/metabolism , Kidney/metabolism , Lupus Erythematosus, Systemic/immunology , Lupus Nephritis/immunology , Male , Mice , Mice, Inbred MRL lpr
16.
J Am Soc Nephrol ; 29(2): 389-399, 2018 02.
Article in English | MEDLINE | ID: mdl-29093030

ABSTRACT

It has become evident that nonlymphoid tissues are populated by distinct subsets of innate and adaptive lymphocytes that are characterized by minimal exchange with recirculating counterparts. Especially at barrier sites, such as the skin, gut, and lung, these tissue-resident lymphocyte populations are ideally positioned to quickly respond to pathogens and other environmental stimuli. The kidney harbors several classes of innate and innate-like lymphocytes that have been described to contribute to this tissue-resident population in other organs, including innate lymphoid cells, natural killer cells, natural killer T cells, mucosal-associated invariant T cells, and γδ T cells. Additionally, a substantial proportion of the adaptive lymphocytes that are found in the kidney displays a surface phenotype suggestive of tissue residency, such as CD69+CD4+ T cells. In this review, we summarize recent advances in the understanding of tissue-resident lymphocyte populations, review the available evidence for the existence of these populations in the kidney, and discuss the potential physiologic and pathophysiologic roles thereof in kidney.


Subject(s)
Immunity, Innate , Kidney Diseases/immunology , Kidney/cytology , Kidney/immunology , Lymphocytes/immunology , Adaptive Immunity , Animals , CD4-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/immunology , Humans , Immunologic Memory , Killer Cells, Natural/immunology , Natural Killer T-Cells/immunology , T-Lymphocyte Subsets/immunology
17.
J Am Soc Nephrol ; 29(4): 1210-1222, 2018 04.
Article in English | MEDLINE | ID: mdl-29483158

ABSTRACT

The IL-17 cytokine family and the cognate receptors thereof have a unique role in organ-specific autoimmunity. Most studies have focused on the founding member of the IL-17 family, IL-17A, as the central mediator of diseases. Indeed, although pathogenic functions have been ascribed to IL-17A and IL-17F in the context of immune-mediated glomerular diseases, the specific functions of the other IL-17 family members in immunity and inflammatory kidney diseases is largely unknown. Here, we report that compared with healthy controls, patients with acute Anti-neutrophil cytoplasmatic antibody (ANCA)-associated crescentic glomerulonephritis (GN) had significantly elevated serum levels of IL-17C (but not IL-17A, F, or E). In mouse models of crescentic GN (nephrotoxic nephritis) and pristane-induced lupus nephritis, deficiency in IL-17C significantly ameliorated the course of GN in terms of renal tissue injury and kidney function. Deficiency of the unique IL-17C receptor IL-17 receptor E (IL-17RE) provided similar protection against crescentic GN. These protective effects associated with a reduced TH17 response. Bone marrow transplantation experiments revealed that IL-17C is produced by tissue-resident cells, but not by lymphocytes. Finally, IL-17RE was highly expressed by CD4+ TH17 cells, and loss of this expression prevented the TH17 responses and subsequent tissue injury in crescentic GN. Our findings indicate that IL-17C promotes TH17 cell responses and immune-mediated kidney disease via IL-17RE expressed on CD4+ TH17 cells. Targeting the IL-17C/IL-17RE pathway may present an intriguing therapeutic strategy for TH17-induced autoimmune disorders.


Subject(s)
Autoimmune Diseases/immunology , CD4-Positive T-Lymphocytes/immunology , Glomerulonephritis/immunology , Interleukin-17/blood , Interleukin-17/physiology , Receptors, Interleukin-17/physiology , Th17 Cells/immunology , Animals , Antibodies, Antineutrophil Cytoplasmic/immunology , Autoimmune Diseases/blood , Autoimmune Diseases/pathology , Autoimmune Diseases/prevention & control , Glomerulonephritis/blood , Glomerulonephritis/pathology , Glomerulonephritis/prevention & control , Humans , Interleukin-17/biosynthesis , Interleukin-17/deficiency , Interleukin-17/genetics , Kidney/immunology , Kidney/pathology , Lupus Nephritis/chemically induced , Lupus Nephritis/immunology , Lupus Nephritis/pathology , Mice , Mice, Inbred C57BL , Mice, Knockout , Molecular Targeted Therapy , RNA, Messenger/biosynthesis , Radiation Chimera , Receptors, Interleukin-17/biosynthesis , Receptors, Interleukin-17/deficiency , Receptors, Interleukin-17/genetics , Terpenes/toxicity , Up-Regulation
18.
J Immunol ; 197(2): 449-57, 2016 07 15.
Article in English | MEDLINE | ID: mdl-27271566

ABSTRACT

The ability of CD4(+) T cells to differentiate into pathogenic Th1 and Th17 or protective T regulatory cells plays a pivotal role in the pathogenesis of autoimmune diseases. Recent data suggest that CD4(+) T cell subsets display a considerable plasticity. This plasticity seems to be a critical factor for their pathogenicity, but also for the potential transition of pathogenic effector T cells toward a more tolerogenic phenotype. The aim of the current study was to analyze the plasticity of Th17 cells in a mouse model of acute crescentic glomerulonephritis and in a mouse chronic model of lupus nephritis. By transferring in vitro generated, highly purified Th17 cells and by using IL-17A fate reporter mice, we demonstrate that Th17 cells fail to acquire substantial expression of the Th1 and Th2 signature cytokines IFN-γ and IL-13, respectively, or the T regulatory transcription factor Foxp3 throughout the course of renal inflammation. In an attempt to therapeutically break the stability of the Th17 phenotype in acute glomerulonephritis, we subjected nephritic mice to CD3-specific Ab treatment. Indeed, this treatment induced an immunoregulatory phenotype in Th17 cells, which was marked by high expression of IL-10 and attenuated renal tissue damage in acute glomerulonephritis. In summary, we show that Th17 cells display a minimum of plasticity in acute and chronic experimental glomerulonephritis and introduce anti-CD3 treatment as a tool to induce a regulatory phenotype in Th17 cells in the kidney that may be therapeutically exploited.


Subject(s)
Autoimmune Diseases/immunology , Cell Differentiation/immunology , Glomerulonephritis/immunology , Lupus Nephritis/immunology , Th17 Cells/immunology , Animals , Disease Models, Animal , Flow Cytometry , Immunohistochemistry , Male , Mice , Mice, Inbred C57BL , Real-Time Polymerase Chain Reaction , T-Lymphocyte Subsets/immunology
19.
J Am Soc Nephrol ; 28(7): 2068-2080, 2017 Jul.
Article in English | MEDLINE | ID: mdl-28154198

ABSTRACT

Innate lymphoid cells (ILCs) have an important role in the immune system's response to different forms of infectious and noninfectious pathologies. In particular, IL-5- and IL-13-producing type 2 ILCs (ILC2s) have been implicated in repair mechanisms that restore tissue integrity after injury. However, the presence of renal ILCs in humans has not been reported. In this study, we show that ILC populations are present in the healthy human kidney. A detailed characterization of kidney-residing ILC populations revealed that IL-33 receptor-positive ILC2s are a major ILC subtype in the kidney of humans and mice. Short-term IL-33 treatment in mice led to sustained expansion of IL-33 receptor-positive kidney ILC2s and ameliorated adriamycin-induced glomerulosclerosis. Furthermore, the expansion of ILC2s modulated the inflammatory response in the diseased kidney in favor of an anti-inflammatory milieu with a reduction of pathogenic myeloid cell infiltration and a marked accumulation of eosinophils that was required for tissue protection. In summary, kidney-residing ILC2s can be effectively expanded in the mouse kidney by IL-33 treatment and are central regulators of renal repair mechanisms. The presence of ILC2s in the human kidney tissue identifies these cells as attractive therapeutic targets for CKD in humans.


Subject(s)
Interleukin-33/physiology , Kidney Diseases/immunology , Kidney Glomerulus/pathology , Lymphocytes/immunology , Animals , Cell Proliferation , Cells, Cultured , Disease Progression , Female , Humans , Immunity, Innate , Interleukin-33/therapeutic use , Kidney Diseases/prevention & control , Lymphocytes/classification , Male , Mice , Mice, Inbred BALB C , Sclerosis/immunology , Sclerosis/prevention & control
20.
Kidney Int ; 92(1): 9-11, 2017 07.
Article in English | MEDLINE | ID: mdl-28647002

ABSTRACT

Immune cells infiltrating the tubulointerstitium critically contribute to the progression of chronic kidney disease. In this issue of Kidney international, Law et al. provide first evidence for a role of natural killer cells in the perpetuation of tubulointerstitial fibrosis in human renal disease. By detailed flow cytometric characterization of leukocytes isolated from kidney biopsies of chronic kidney disease patients, they define accumulation of natural killer cells as a feature of fibrotic kidney tissue and provide insight into potential mechanisms of how these cells might promote chronic kidney inflammation.


Subject(s)
Fibrosis , Kidney , Disease Progression , Humans , Nephrectomy , Renal Insufficiency, Chronic
SELECTION OF CITATIONS
SEARCH DETAIL