Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
Biophys J ; 123(5): 610-621, 2024 Mar 05.
Article in English | MEDLINE | ID: mdl-38356261

ABSTRACT

We modify a three-dimensional multiscale model of fibrinolysis to study the effect of plasmin-mediated degradation of fibrin on tissue plasminogen activator (tPA) diffusion and fibrinolysis. We propose that tPA is released from a fibrin fiber by simple kinetic unbinding, as well as by "forced unbinding," which occurs when plasmin degrades fibrin to which tPA is bound. We show that, if tPA is bound to a small-enough piece of fibrin that it can diffuse into the clot, then plasmin can increase the effective diffusion of tPA. If tPA is bound to larger fibrin degradation products (FDPs) that can only diffuse along the clot, then plasmin can decrease the effective diffusion of tPA. We find that lysis rates are fastest when tPA is bound to fibrin that can diffuse into the clot, and slowest when tPA is bound to FDPs that can only diffuse along the clot. Laboratory experiments confirm that FDPs can diffuse into a clot, and they support the model hypothesis that forced unbinding of tPA results in a mix of FDPs, such that tPA bound to FDPs can diffuse both into and along the clot. Regardless of how tPA is released from a fiber, a tPA mutant with a smaller dissociation constant results in slower lysis (because tPA binds strongly to fibrin), and a tPA mutant with a larger dissociation constant results in faster lysis.


Subject(s)
Fibrinolysin , Fibrinolysis , Fibrinolysin/metabolism , Fibrinolysin/pharmacology , Tissue Plasminogen Activator/metabolism , Tissue Plasminogen Activator/pharmacology , Fibrin/metabolism , Kinetics , Plasminogen/metabolism
2.
Soft Matter ; 20(21): 4184-4196, 2024 May 29.
Article in English | MEDLINE | ID: mdl-38686609

ABSTRACT

Intravascular blood clots are subject to hydrodynamic shear and other forces that cause clot deformation and rupture (embolization). A portion of the ruptured clot can block blood flow in downstream vessels. The mechanical stability of blood clots is determined primarily by the 3D polymeric fibrin network that forms a gel. Previous studies have primarily focused on the rupture of blood plasma clots under tensile loading (Mode I), our current study investigates the rupture of fibrin induced by shear loading (Mode II), dominating under physiological conditions induced by blood flow. Using experimental and theoretical approaches, we show that fracture toughness, i.e. the critical energy release rate, is relatively independent of the type of loading and is therefore a fundamental property of the gel. Ultrastructural studies and finite element simulations demonstrate that cracks propagate perpendicular to the direction of maximum stretch at the crack tip. These observations indicate that locally, the mechanism of rupture is predominantly tensile. Knowledge gained from this study will aid in the development of methods for prediction/prevention of thrombotic embolization.


Subject(s)
Fibrin , Fibrin/metabolism , Fibrin/chemistry , Thrombosis/physiopathology , Blood Coagulation , Shear Strength , Biomechanical Phenomena , Stress, Mechanical , Humans , Animals , Finite Element Analysis
3.
Biophys Rev (Melville) ; 5(3): 032101, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38962393

ABSTRACT

Polymeric fibrin provides the structural and mechanical stability of a blood clot. Fibrin fibers are rod-like and create a network mesh that holds blood cells. When a clot has performed its physiological function in wound healing and preventing excessive blood loss, it must be resolved by the enzymatic degradation of fibrin, otherwise known as fibrinolysis. If a blood clot forms when or where it is not needed, as occurs in ischemic strokes and myocardial infarctions, the blood clot (thrombus) can obstruct blood flow to downstream organs. Obstructive thrombi must be degraded or removed to prevent further complications. If a clot is not degraded on its own, lytic agents (i.e., tissue plasminogen activator, tPA) are given exogenously to induce fibrinolysis. Here, we fluorescently labeled both fibrin and tPA to visualize degradation at the edge of the clot. The fibers with bound tPA were looped or coiled while the fibers farther into the clot remain straight and stable displaying the diffusion of tPA and depth of lysis. This image provides (1) a new method to monitor fibrinolysis with a commercially available chamber with convenient inlets and (2) the visualization of tPA-bound fibrin and the behavior of fibers during degradation. Future work could utilize this technique to study tPA molecule and fibrin interactions, lysis front degradation, and fibrin fiber linearity to understand the mechanisms of intermolecular dynamics dependent on network structure. An enhanced insight into this process can aid in the development of optimized therapeutics to target stubborn clots.

4.
Biomolecules ; 14(2)2024 Feb 16.
Article in English | MEDLINE | ID: mdl-38397467

ABSTRACT

Altered properties of fibrin clots have been associated with bleeding and thrombotic disorders, including hemophilia or trauma and heart attack or stroke. Clotting factors, such as thrombin and tissue factor, or blood plasma proteins, such as fibrinogen, play critical roles in fibrin network polymerization. The concentrations and combinations of these proteins affect the structure and stability of clots, which can lead to downstream complications. The present work includes clots made from plasma and purified fibrinogen and shows how varying fibrinogen and activation factor concentrations affect the fibrin properties under both conditions. We used a combination of scanning electron microscopy, confocal microscopy, and turbidimetry to analyze clot/fiber structure and polymerization. We quantified the structural and polymerization features and found similar trends with increasing/decreasing fibrinogen and thrombin concentrations for both purified fibrinogen and plasma clots. Using our compiled results, we were able to generate multiple linear regressions that predict structural and polymerization features using various fibrinogen and clotting agent concentrations. This study provides an analysis of structural and polymerization features of clots made with purified fibrinogen or plasma at various fibrinogen and clotting agent concentrations. Our results could be utilized to aid in interpreting results, designing future experiments, or developing relevant mathematical models.


Subject(s)
Fibrinogen , Thrombosis , Humans , Fibrinogen/metabolism , Thrombin/metabolism , Blood Coagulation , Plasma/metabolism , Fibrin/chemistry
5.
Sci Rep ; 14(1): 2623, 2024 02 01.
Article in English | MEDLINE | ID: mdl-38297113

ABSTRACT

Blood clots, which are composed of blood cells and a stabilizing mesh of fibrin fibers, are critical in cessation of bleeding following injury. However, their action is transient and after performing their physiological function they must be resolved through a process known as fibrinolysis. Internal fibrinolysis is the degradation of fibrin by the endogenous or innate presence of lytic enzymes in the bloodstream; under healthy conditions, this process regulates hemostasis and prevents bleeding or clotting. Fibrin-bound tissue plasminogen activator (tPA) converts nearby plasminogen into active plasmin, which is bound to the fibrin network, breaking it down into fibrin degradation products and releasing the entrapped blood cells. It is poorly understood how changes in the fibrin structure and lytic protein ratios influence the biochemical regulation and behavior of internal fibrinolysis. We used turbidity kinetic tracking and microscopy paired with mathematical modeling to study fibrin structure and lytic protein ratios that restrict internal fibrinolysis. Analysis of simulations and experiments indicate that fibrinolysis is driven by pore expansion of the fibrin network. We show that this effect is strongly influenced by the ratio of fibrin:tPAwhen compared to absolute tPA concentration. Thus, it is essential to consider relative protein concentrations when studying internal fibrinolysis both experimentally and in the clinic. An improved understanding of effective internal lysis can aid in development of better therapeutics for the treatment of bleeding and thrombosis.


Subject(s)
Fibrinolysis , Thrombosis , Humans , Tissue Plasminogen Activator/metabolism , Blood Coagulation , Fibrin/metabolism
6.
Bioengineering (Basel) ; 11(1)2024 Jan 08.
Article in English | MEDLINE | ID: mdl-38247940

ABSTRACT

Diabetic retinopathy affects more than 100 million people worldwide and is projected to increase by 50% within 20 years. Increased blood glucose leads to the formation of advanced glycation end products (AGEs), which cause cellular and molecular dysfunction across neurovascular systems. These molecules initiate the slow breakdown of the retinal vasculature and the inner blood retinal barrier (iBRB), resulting in ischemia and abnormal angiogenesis. This project examined the impact of AGEs in altering the morphology of healthy cells that comprise the iBRB, as well as the effects of AGEs on thrombi formation, in vitro. Our results illustrate that AGEs significantly alter cellular areas and increase the formation of blood clots via elevated levels of tissue factor. Likewise, AGEs upregulate the expression of cell receptors (RAGE) on both endothelial and glial cells, a hallmark biomarker of inflammation in diabetic cells. Examining the effects of AGEs stimulation on cellular functions that work to diminish iBRB integrity will greatly help to advance therapies that target vision loss in adults.

7.
bioRxiv ; 2024 Jan 19.
Article in English | MEDLINE | ID: mdl-38293104

ABSTRACT

Background: Traumatic injury is a leading cause of death for those under the age of 45, with 40% occurring due to hemorrhage. Severe tissue injury and hypoperfusion lead to marked changes in coagulation, thereby preventing formation of a stable blood clot and increasing hemorrhage associated mortality. Objectives: We aimed to quantify changes in clot formation and mechanics occurring after traumatic injury and the relationship to coagulation kinetics, and fibrinolysis. Methods: Plasma was isolated from injured patients upon arrival to the emergency department. Coagulation kinetics and mechanics of healthy donors and patient plasma were compared with rheological, turbidimetric and thrombin generation assays. ELISA's were performed to determine tissue plasminogen activator (tPA) and D-dimer concentration, as fibrinolytic markers. Results: Sixty-three patients were included in the study. The median injury severity score (ISS) was 17, median age was 37.5 years old, and mortality rate was 30%. Rheological, turbidimetric and thrombin generation assays indicated that trauma patients on average, and especially deceased patients, exhibited reduced clot stiffness, increased fibrinolysis and reduced thrombin generation compared to healthy donors. Fibrinogen concentration, clot stiffness, D-dimer and tPA all demonstrated significant direct correlation to increasing ISS. Machine learning algorithms identified and highlighted the importance of clinical factors on determining patient outcomes. Conclusions: Viscoelastic and biochemical assays indicate significant contributors and predictors of mortality for improved patient treatment and therapeutic target detection. ESSENTIALS: Traumatic injury may lead to alterations in a patient's ability to form stable blood clotsA study was performed to assess how trauma severity affects coagulation kineticsKey alterations were observed in trauma patients, who exhibit weaker and slower forming clotsPaired with machine learning methods, the results indicate key aspects contributing to mortality.

SELECTION OF CITATIONS
SEARCH DETAIL