Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
Sci Rep ; 14(1): 6836, 2024 03 21.
Article in English | MEDLINE | ID: mdl-38514719

ABSTRACT

Insect-based diets are gaining interest as potential ingredients in improving poultry gut health. This study assessed the dietary treatment with whole dried Tenebrio molitor larvae (TM) on broiler chickens' gut microbiota and morphology. 120 Ross-308 broilers received treated diets with 5% (TM5) and 10% (TM10) replacement ratio in a 35-day trial. Intestinal histomorphometry was assessed, as well as claudin-3 expression pattern and ileal and caecal digesta for microbial community diversity. Null hypothesis was tested with two-way ANOVA considering the intestinal segment and diet as main factors. The TM5 group presented higher villi in the duodenum and ileum compared to the other two (P < 0.001), while treated groups showed shallower crypts in the duodenum (P < 0.001) and deeper in the jejunum and ileum than the control (P < 0.001). Treatments increased the caecal Firmicutes/Bacteroidetes ratio and led to significant changes at the genus level. While Lactobacilli survived in the caecum, a significant reduction was evident in the ileum of both groups, mainly owed to L. aviarius. Staphylococci and Methanobrevibacter significantly increased in the ileum of the TM5 group. Results suggest that dietary supplementation with whole dried TM larvae has no adverse effect on the intestinal epithelium formation and positively affects bacterial population richness and diversity.


Subject(s)
Gastrointestinal Microbiome , Tenebrio , Animals , Chickens/microbiology , Animal Feed/analysis , Diet/veterinary , Larva , Dietary Supplements/analysis
2.
Biomolecules ; 14(6)2024 May 24.
Article in English | MEDLINE | ID: mdl-38927023

ABSTRACT

This study utilized phytochemical screening to conduct the qualitative analysis of plant extracts, aiming to identify various classes of secondary metabolites. Moreover, the antibacterial activity of different types of Oregano vulgare and Salvia triloba extracts was determined. To achieve the aim of this study, aqueous, ethanolic, and enzymatic extracts were prepared and screened for phytochemical capacity and antioxidant activities. The determination of the antibacterial activity included phenotypic screening of antibiotic susceptibility pattern of oral and food pathogenic bacterial strains, determination of the minimum inhibitory concentration and minimum bactericidal concentration-via microdilution broth test and in vitro valuation of antibacterial efficacies-of the anti-biofilm properties of the studied herbal extractions. Results: Our study evaluated the phytochemical composition and the antioxidant, antibacterial, and anti-biofilm properties of O. vulgare and S. triloba extracts. The analyzed samples contained bioactive compounds, such as phenolics and flavonoids, contributing to the observed strong antioxidant effect. Furthermore, they exhibited notable activity against oral biofilm formation and demonstrated significant antibacterial efficacy against dental caries' microorganisms as well as food pathogens. Despite methodological variations, all extracts showed significant antioxidant capacity and promising antibacterial activity against various pathogens, including resistant strains, while also inhibiting biofilm formation. Although limited to two plant species and facing methodological constraints, this study lays the groundwork for future research, indicating the therapeutic potential of O. vulgare and S. triloba extracts. Further exploration is needed to report on underlying mechanisms and validate efficacy through clinical trials.


Subject(s)
Anti-Bacterial Agents , Antioxidants , Biofilms , Dental Caries , Microbial Sensitivity Tests , Origanum , Plant Extracts , Salvia , Origanum/chemistry , Salvia/chemistry , Plant Extracts/pharmacology , Plant Extracts/chemistry , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Biofilms/drug effects , Antioxidants/pharmacology , Antioxidants/chemistry , Dental Caries/microbiology , Dental Caries/drug therapy , Phytochemicals/pharmacology , Phytochemicals/chemistry , Bacteria/drug effects , Humans , Food Microbiology , Flavonoids/pharmacology , Flavonoids/chemistry
3.
Eur J Cell Biol ; 103(3): 151445, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39024989

ABSTRACT

Allogeneic serum and tissue-specific extracellular matrix have been shown to maintain permanently differentiated cell phenotype in culture. This is of particular importance for human tenocytes, a cell population that readily loses its function during ex vivo culture. With these in mind, herein we extracted human tenocytes using either foetal bovine serum or human serum, cultured them in the absence and presence of carrageenan and Ficoll®, the most widely used macromolecular crowding agents (to induce tissue-specific extracellular matrix deposition), and assessed cellular function, via metabolic activity, viability, proliferation and immunofluorescence for collagen related molecules, non-collagenous molecules and transmembrane molecules. At day 7, longest time point assessed, neither carrageenan nor Ficoll® significantly affected metabolic activity, viability and proliferation in either serum and human serum significantly increased metabolic activity and proliferation. At day 7, in the absence of macromolecular crowding, cells in human serum deposited significantly lower collagen type VI, biglycan, versican and tenomodulin than cells in foetal bovine serum. Interestingly, at day 7, in comparison to the no macromolecular crowding group, carrageenan in foetal bovine serum induced the highest effect, as judged by the highest number of significantly increased molecules (collagen type I, collagen type IV, collagen type V, collagen type VI, transforming growth factor ß1, matrix metalloproteinase 14, lumican, versican, scleraxis and integrin α2ß1). These data, although contradict previous observations where human serum outperformed foetal bovine serum, at the same time, support the use of foetal bovine serum in the development of cell-based medicines.


Subject(s)
Tenocytes , Humans , Tenocytes/metabolism , Tenocytes/cytology , Cells, Cultured , Cell Proliferation , Animals , Serum/metabolism , Serum/chemistry , Cattle , Carrageenan/pharmacology , Ficoll , Extracellular Matrix/metabolism
4.
Vet Sci ; 11(2)2024 Feb 06.
Article in English | MEDLINE | ID: mdl-38393091

ABSTRACT

Nowadays, the global animal industry faces considerable challenges in securing sufficient feed resources. Responding to consumer demands for reduced use of antibiotics in animal nutrition, better animal welfare status, and reduced impact on the environment, there is an increased urgency to develop innovative functional feeds with a reduced environmental footprint and the ability to improve meat quality and safety. In an effort to explore innovative feed ingredients for growing pig diets, the combined dietary supplementation of Tenebrio molitor larvae and chitosan was investigated. An experimental trial was performed with 48 weaned pigs (34 days of life; mixed sex) that were randomly assigned to four treatment groups (with six males and six females each): Group A (control), Group B (supplemented with T. molitor larvae at 10%), Group C (supplemented with chitosan at 0.05%), and Group D (supplemented with both ingredients at 10% and 0.05%, respectively). On the 42nd day of the experimental trial, samples of blood, feces, and carcass parts were taken for analysis. The results indicated that the insect larvae meal significantly improved (p < 0.05) overall performance, increased (p < 0.05) blood red blood cell content, increased meat phenolic content (p < 0.05), improved meat oxidative stability (p < 0.05), and affected meat fatty acid profile (p < 0.05). On the other hand, chitosan had no significant effect on overall performance (p > 0.05), but it significantly increased blood lymphocyte content (p < 0.05), affected the fecal microbiota (p < 0.05), improved meat oxidative stability (p < 0.05), increased meat phenolic content (p < 0.05), and affected meat fatty acid composition (p < 0.05) and (p < 0.05) meat color. Finally, the combined use of both T. molitor and chitosan significantly affected some important zootechnical parameters (p < 0.05), fecal microbial populations (p < 0.05), meat color (p < 0.05), and fatty acid profile (p < 0.05). Further investigation into the potential interaction between insect larvae meals and chitosan in pig diets is advised.

5.
Mater Today Bio ; 25: 100977, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38322661

ABSTRACT

Although human tenocytes and dermal fibroblasts have shown promise in tendon engineering, no tissue engineered medicine has been developed due to the prolonged ex vivo time required to develop an implantable device. Considering that macromolecular crowding has the potential to substantially accelerate the development of functional tissue facsimiles, herein we compared human tenocyte and dermal fibroblast behaviour under standard and macromolecular crowding conditions to inform future studies in tendon engineering. Basic cell function analysis made apparent the innocuousness of macromolecular crowding for both cell types. Gene expression analysis of the without macromolecular crowding groups revealed expression of tendon related molecules in human dermal fibroblasts and tenocytes. Protein electrophoresis and immunocytochemistry analyses showed significantly increased and similar deposition of collagen fibres by macromolecular crowding in the two cell types. Proteomics analysis demonstrated great similarities between human tenocyte and dermal fibroblast cultures, as well as the induction of haemostatic, anti-microbial and tissue-protective proteins by macromolecular crowding in both cell populations. Collectively, these data rationalise the use of either human dermal fibroblasts or tenocytes in combination with macromolecular crowding in tendon engineering.

6.
Microorganisms ; 12(1)2023 Dec 28.
Article in English | MEDLINE | ID: mdl-38257885

ABSTRACT

The rising demand for novel antibiotic agents prompts an investigation into natural resources, notably plant-derived compounds. In this study, various extracts (aqueous, ethanolic, aqueous-ethanolic, and enzymatic) of Rosa damascena and Hypericum perforatum were systematically evaluated against bacterial strains isolated from dental lesions (n = 6) and food sources (raw milk and broiler carcass, n = 2). Minimal inhibitory concentration (MIC), minimal bactericidal concentration (MBC), antibiofilm activity, and time-kill kinetics were assessed across a range of extract concentrations, revealing a dose-responsive effect. Notably, some extracts exhibited superior antibacterial efficacy compared to standard clinical antibiotics, and the time-kill kinetics demonstrated a rapid elimination of bacterial loads within 24 h. The susceptibility pattern proved strain-specific, contingent upon the extract type, yet all tested pathogens exhibited sensitivity. The identified extracts, rich in phenolic and polyphenolic compounds, as well as other antioxidant properties, contributed to their remarkable antibiotic effects. This comprehensive investigation not only highlights the potential of Rosa damascena and Hypericum perforatum extracts as potent antibacterial agents against diverse bacterial strains including caries pathogens, but also underscores their rapid action and dose-dependent efficacy. The findings suggest a promising avenue for harnessing plant-derived compounds in the development of novel antimicrobial strategies against dental caries and other oral inflammations, bridging the gap between natural resources and antibiotic discovery.

SELECTION OF CITATIONS
SEARCH DETAIL