Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 56
Filter
1.
Mol Biol Evol ; 38(8): 3033-3045, 2021 07 29.
Article in English | MEDLINE | ID: mdl-33822172

ABSTRACT

Accurate determination of the evolutionary relationships between genes is a foundational challenge in biology. Homology-evolutionary relatedness-is in many cases readily determined based on sequence similarity analysis. By contrast, whether or not two genes directly descended from a common ancestor by a speciation event (orthologs) or duplication event (paralogs) is more challenging, yet provides critical information on the history of a gene. Since 2009, this task has been the focus of the Quest for Orthologs (QFO) Consortium. The sixth QFO meeting took place in Okazaki, Japan in conjunction with the 67th National Institute for Basic Biology conference. Here, we report recent advances, applications, and oncoming challenges that were discussed during the conference. Steady progress has been made toward standardization and scalability of new and existing tools. A feature of the conference was the presentation of a panel of accessible tools for phylogenetic profiling and several developments to bring orthology beyond the gene unit-from domains to networks. This meeting brought into light several challenges to come: leveraging orthology computations to get the most of the incoming avalanche of genomic data, integrating orthology from domain to biological network levels, building better gene models, and adapting orthology approaches to the broad evolutionary and genomic diversity recognized in different forms of life and viruses.


Subject(s)
Genetic Speciation , Genomics/trends , Phylogeny , Genome, Viral , Genomics/methods
2.
Physiol Plant ; 174(1): e13598, 2022 Jan.
Article in English | MEDLINE | ID: mdl-34792189

ABSTRACT

Diatoms adapt to various aquatic light environments and play major roles in the global carbon cycle using their unique light-harvesting system, i.e. fucoxanthin chlorophyll a/c binding proteins (FCPs). Structural analyses of photosystem II (PSII)-FCPII and photosystem I (PSI)-FCPI complexes from the diatom Chaetoceros gracilis have revealed the localization and interactions of many FCPs; however, the entire set of FCPs has not been characterized. Here, we identify 46 FCPs in the newly assembled genome and transcriptome of C. gracilis. Phylogenetic analyses suggest that these FCPs can be classified into five subfamilies: Lhcr, Lhcf, Lhcx, Lhcz, and the novel Lhcq, in addition to a distinct type of Lhcr, CgLhcr9. The FCPs in Lhcr, including CgLhcr9 and some Lhcqs, have orthologous proteins in other diatoms, particularly those found in the PSI-FCPI structure. By contrast, the Lhcf subfamily, some of which were found in the PSII-FCPII complex, seems to be diversified in each diatom species, and the number of Lhcqs differs among species, indicating that their diversification may contribute to species-specific adaptations to light. Further phylogenetic analyses of FCPs/light-harvesting complex (LHC) proteins using genome data and assembled transcriptomes of other diatoms and microalgae in public databases suggest that our proposed classification of FCPs is common among various red-lineage algae derived from secondary endosymbiosis of red algae, including Haptophyta. These results provide insights into the loss and gain of FCP/LHC subfamilies during the evolutionary history of the red algal lineage.


Subject(s)
Chlorophyll Binding Proteins , Diatoms , Chlorophyll A/chemistry , Chlorophyll Binding Proteins/genetics , Chlorophyll Binding Proteins/metabolism , Diatoms/genetics , Diatoms/metabolism , Light-Harvesting Protein Complexes/metabolism , Phylogeny , Xanthophylls
3.
Genes Cells ; 25(7): 498-509, 2020 Jul.
Article in English | MEDLINE | ID: mdl-32323394

ABSTRACT

Founder animals carrying high proportions of somatic mutation induced by CRISPR-Cas9 enable a rapid and scalable strategy for the functional screening of numerous target genes in vivo. In this functional screening, genotyping using pooled amplicons with next-generation sequencing is the most suitable approach for large-scale management of multiple samples and accurate evaluation of the efficiency of Cas9-induced somatic mutations at target sites. Here, we present a simple workflow for genotyping of multiple CRISPR-Cas9-based knockout founders by pooled amplicon sequencing. Using custom barcoded primers, pooled amplicons from multiple individuals can be run in a single-indexed library on the Illumina MiSeq platform. Additionally, a user-friendly web tool, CLiCKAR, is available to simultaneously perform demultiplexing of pooled sequence data and evaluation of somatic mutation in each phenotype. CLiCKAR provides users with practical reports regarding the positions of insertions/deletions, as well as the frameshift ratio and tables containing mutation sequences, and read counts of each phenotype, with just a few clicks by the implementation of demultiplexing for pooled sample data and calculation of the frameshift ratio. This genotyping workflow can be harnessed to evaluate genotype-phenotype correlations in CRISPR-Cas9-based loss-of-function screening of numerous target genes in various organisms.


Subject(s)
CRISPR-Cas Systems/genetics , Gene Editing/methods , Xenopus/genetics , Animals , Female , Frameshift Mutation , Gene Library , Genetic Association Studies , Genotype , High-Throughput Nucleotide Sequencing , INDEL Mutation , Male , Phenotype , Software , Workflow
4.
Nucleic Acids Res ; 47(D1): D382-D389, 2019 01 08.
Article in English | MEDLINE | ID: mdl-30462302

ABSTRACT

The Microbial Genome Database for Comparative Analysis (MBGD) is a database for comparative genomics based on comprehensive orthology analysis of bacteria, archaea and unicellular eukaryotes. MBGD now contains 6318 genomes. To utilize the database for both closely related and distantly related genomes, MBGD previously provided two types of ortholog tables: the standard ortholog table containing one representative genome from each genus covering the entire taxonomic range and the taxon specific ortholog tables for each taxon. However, this approach has a drawback in that the standard ortholog table contains only genes that are conserved in the representative genomes. To address this problem, we developed a stepwise procedure to construct ortholog tables hierarchically in a bottom-up manner. By using this approach, the new standard ortholog table now covers the entire gene repertoire stored in MBGD. In addition, we have enhanced several functionalities, including rapid and flexible keyword searching, profile-based sequence searching for orthology assignment to a user query sequence, and displaying a phylogenetic tree of each taxon based on the concatenated core gene sequences. For integrative database searching, the core data in MBGD are represented in Resource Description Framework (RDF) and a SPARQL interface is provided to search them. MBGD is available at http://mbgd.genome.ad.jp/.


Subject(s)
Genome, Archaeal , Genome, Bacterial , Genome, Fungal , Genome, Protozoan , Genomics , Sequence Homology, Nucleic Acid , Cluster Analysis , Databases, Genetic , Software , User-Computer Interface
5.
Genes Cells ; 22(10): 918-928, 2017 Oct.
Article in English | MEDLINE | ID: mdl-28776863

ABSTRACT

The molecular mechanisms of cell reprogramming and differentiation involve various signaling factors. Small molecule compounds have been identified to artificially influence these factors through interacting cellular proteins. Although such small molecule compounds are useful to enhance reprogramming and differentiation and to show the mechanisms that underlie these events, the screening usually requires a large number of compounds to identify only a very small number of hits (e.g., one hit among several tens of thousands of compounds). Here, we show a proof of concept that xenospecific gene products can affect the efficiency of cell reprogramming to pluripotency. Thirty genes specific for the bacterium Wolbachia pipientis were forcibly expressed individually along with reprogramming factors (Oct4, Sox2, Klf4 and c-Myc) that can generate induced pluripotent stem cells in mammalian cells, and eight were found to affect the reprogramming efficiency either positively or negatively (hit rate 26.7%). Mechanistic analysis suggested one of these proteins interacted with cytoskeleton to promote reprogramming. Our results raise the possibility that xenospecific gene products provide an alternative way to study the regulatory mechanism of cell identity.


Subject(s)
Cellular Reprogramming/genetics , Genes, Bacterial , Neural Stem Cells/cytology , Pluripotent Stem Cells/cytology , Animals , Cell Line , Cytoskeleton/metabolism , Fibroblasts/cytology , Fibroblasts/metabolism , Kruppel-Like Factor 4 , Kruppel-Like Transcription Factors/genetics , Kruppel-Like Transcription Factors/metabolism , Mice , Neural Stem Cells/metabolism , Octamer Transcription Factor-3/genetics , Octamer Transcription Factor-3/metabolism , Pluripotent Stem Cells/metabolism , Proto-Oncogene Proteins c-myc/genetics , Proto-Oncogene Proteins c-myc/metabolism , SOXB1 Transcription Factors/genetics , SOXB1 Transcription Factors/metabolism , Wolbachia/genetics
6.
BMC Bioinformatics ; 18(1): 93, 2017 Feb 08.
Article in English | MEDLINE | ID: mdl-28178937

ABSTRACT

BACKGROUND: Toward improved interoperability of distributed biological databases, an increasing number of datasets have been published in the standardized Resource Description Framework (RDF). Although the powerful SPARQL Protocol and RDF Query Language (SPARQL) provides a basis for exploiting RDF databases, writing SPARQL code is burdensome for users including bioinformaticians. Thus, an easy-to-use interface is necessary. RESULTS: We developed SPANG, a SPARQL client that has unique features for querying RDF datasets. SPANG dynamically generates typical SPARQL queries according to specified arguments. It can also call SPARQL template libraries constructed in a local system or published on the Web. Further, it enables combinatorial execution of multiple queries, each with a distinct target database. These features facilitate easy and effective access to RDF datasets and integrative analysis of distributed data. CONCLUSIONS: SPANG helps users to exploit RDF datasets by generation and reuse of SPARQL queries through a simple interface. This client will enhance integrative exploitation of biological RDF datasets distributed across the Web. This software package is freely available at http://purl.org/net/spang .


Subject(s)
Computer Communication Networks , Databases, Factual , Internet
7.
Nucleic Acids Res ; 43(Database issue): D270-6, 2015 Jan.
Article in English | MEDLINE | ID: mdl-25398900

ABSTRACT

The microbial genome database for comparative analysis (MBGD) (available at http://mbgd.genome.ad.jp/) is a comprehensive ortholog database for flexible comparative analysis of microbial genomes, where the users are allowed to create an ortholog table among any specified set of organisms. Because of the rapid increase in microbial genome data owing to the next-generation sequencing technology, it becomes increasingly challenging to maintain high-quality orthology relationships while allowing the users to incorporate the latest genomic data available into an analysis. Because many of the recently accumulating genomic data are draft genome sequences for which some complete genome sequences of the same or closely related species are available, MBGD now stores draft genome data and allows the users to incorporate them into a user-specific ortholog database using the MyMBGD functionality. In this function, draft genome data are incorporated into an existing ortholog table created only from the complete genome data in an incremental manner to prevent low-quality draft data from affecting clustering results. In addition, to provide high-quality orthology relationships, the standard ortholog table containing all the representative genomes, which is first created by the rapid classification program DomClust, is now refined using DomRefine, a recently developed program for improving domain-level clustering using multiple sequence alignment information.


Subject(s)
Databases, Genetic , Genome, Microbial , Animals , Genomics , Humans , Protein Structure, Tertiary , Sequence Alignment
8.
Dev Biol ; 406(2): 271-82, 2015 Oct 15.
Article in English | MEDLINE | ID: mdl-26282893

ABSTRACT

Many amphibians can regenerate limbs, even in adulthood. If a limb is amputated, the stump generates a blastema that makes a complete, new limb in a process similar to developmental morphogenesis. The blastema is thought to inherit its limb-patterning properties from cells in the stump, and it retains the information despite changes in morphology, gene expression, and differentiation states required by limb regeneration. We hypothesized that these cellular properties are maintained as epigenetic memory through histone modifications. To test this hypothesis, we analyzed genome-wide histone modifications in Xenopus limb bud regeneration. The trimethylation of histone H3 at lysine 4 (H3K4me3) is closely related to an open chromatin structure that allows transcription factors access to genes, whereas the trimethylation of histone H3 at lysine 27 (H3K27me3) is related to a closed chromatin state that blocks the access of transcription factors. We compared these two modification profiles by high-throughput sequencing of samples prepared from the intact limb bud and the regenerative blastema by chromatin immunoprecipitation. For many developmental genes, histone modifications at the transcription start site were the same in the limb bud and the blastema, were stable during regeneration, and corresponded well to limb properties. These results support our hypothesis that histone modifications function as a heritable cellular memory to maintain limb cell properties, despite dynamic changes in gene expression during limb bud regeneration in Xenopus.


Subject(s)
Epigenesis, Genetic/physiology , Gene Expression Regulation, Developmental/physiology , Histone Code/physiology , Limb Buds/physiology , Regeneration/physiology , Xenopus/physiology , Adenosine/analogs & derivatives , Animals , Animals, Genetically Modified , Base Sequence , Chromatin Immunoprecipitation , DNA Methylation/genetics , DNA Primers/genetics , Fluorescent Antibody Technique , High-Throughput Nucleotide Sequencing , Histones/metabolism , In Situ Hybridization , Molecular Sequence Data , Polymerase Chain Reaction , Sequence Analysis, DNA
9.
Nucleic Acids Res ; 41(Database issue): D631-5, 2013 Jan.
Article in English | MEDLINE | ID: mdl-23118485

ABSTRACT

The microbial genome database for comparative analysis (MBGD, available at http://mbgd.genome.ad.jp/) is a platform for microbial genome comparison based on orthology analysis. As its unique feature, MBGD allows users to conduct orthology analysis among any specified set of organisms; this flexibility allows MBGD to adapt to a variety of microbial genomic study. Reflecting the huge diversity of microbial world, the number of microbial genome projects now becomes several thousands. To efficiently explore the diversity of the entire microbial genomic data, MBGD now provides summary pages for pre-calculated ortholog tables among various taxonomic groups. For some closely related taxa, MBGD also provides the conserved synteny information (core genome alignment) pre-calculated using the CoreAligner program. In addition, efficient incremental updating procedure can create extended ortholog table by adding additional genomes to the default ortholog table generated from the representative set of genomes. Combining with the functionalities of the dynamic orthology calculation of any specified set of organisms, MBGD is an efficient and flexible tool for exploring the microbial genome diversity.


Subject(s)
Databases, Nucleic Acid , Genetic Variation , Genome , Genome, Bacterial , Internet
10.
BMC Bioinformatics ; 15: 148, 2014 May 18.
Article in English | MEDLINE | ID: mdl-24885064

ABSTRACT

BACKGROUND: Identification of ortholog groups is a crucial step in comparative analysis of multiple genomes. Although several computational methods have been developed to create ortholog groups, most of those methods do not evaluate orthology at the sub-gene level. In our method for domain-level ortholog clustering, DomClust, proteins are split into domains on the basis of alignment boundaries identified by all-against-all pairwise comparison, but it often fails to determine appropriate boundaries. RESULTS: We developed a method to improve domain-level ortholog classification using multiple alignment information. This method is based on a scoring scheme, the domain-specific sum-of-pairs (DSP) score, which evaluates ortholog clustering results at the domain level as the sum total of domain-level alignment scores. We developed a refinement pipeline to improve domain-level clustering, DomRefine, by optimizing the DSP score. We applied DomRefine to domain-level ortholog groups created by DomClust using a dataset obtained from the Microbial Genome Database for Comparative Analysis (MBGD), and evaluated the results using COG clusters and TIGRFAMs models as the reference data. Thus, we observed that the agreement between the resulting classification and the classifications in the reference databases is improved at almost every step in the refinement pipeline. Moreover, the refined classification showed better agreement than the classifications in the eggNOG databases when TIGRFAMs was used as the reference database. CONCLUSIONS: DomRefine is a useful tool for improving the quality of domain-level ortholog classification among microbial genomes. Combining with a rapid domain-level ortholog clustering method, such as DomClust, it can be used to create a high-quality ortholog database that can serve as a solid basis for various comparative genome analyses.


Subject(s)
Protein Structure, Tertiary , Sequence Alignment/methods , Sequence Analysis, Protein , Cluster Analysis , Genomics , Phylogeny , Software
11.
Mol Biol Evol ; 30(6): 1454-64, 2013 Jun.
Article in English | MEDLINE | ID: mdl-23505045

ABSTRACT

Identifying population structure forms an important basis for genetic and evolutionary studies. Most current methods to identify population structure have limitations in analyzing haplotypes and recombination across the genome. Recently, a method of chromosome painting in silico has been developed to overcome these shortcomings and has been applied to multiple human genome sequences. This method detects the genome-wide transfer of DNA sequence chunks through homologous recombination. Here, we apply it to the frequently recombining bacterial species Helicobacter pylori that has infected Homo sapiens since their birth in Africa and shows wide phylogeographic divergence. Multiple complete genome sequences were analyzed including sequences from Okinawa, Japan, that we recently sequenced. The newer method revealed a finer population structure than revealed by a previous method that examines only MLST housekeeping genes or a phylogenetic network analysis of the core genome. Novel subgroups were found in Europe, Amerind, and East Asia groups. Examination of genetic flux showed some singleton strains to be hybrids of subgroups and revealed evident signs of population admixture in Africa, Europe, and parts of Asia. We expect this approach to further our understanding of intraspecific bacterial evolution by revealing population structure at a finer scale.


Subject(s)
Chromosome Painting , Chromosomes, Bacterial , DNA, Bacterial/chemistry , Cluster Analysis , Computer Simulation , DNA, Bacterial/genetics , Evolution, Molecular , Gene Flow , Genetics, Microbial/methods , Helicobacter pylori/genetics , Phylogeny , Recombination, Genetic/genetics
12.
Helicobacter ; 19(4): 260-71, 2014 Aug.
Article in English | MEDLINE | ID: mdl-24673878

ABSTRACT

BACKGROUND: Although the infection rate of Helicobacter suis is significantly lower than that of Helicobacter pylori, the H. suis infection is associated with a high rate of gastric mucosa-associated lymphoid tissue (MALT) lymphoma. In addition, in vitro cultivation of H. suis remains difficult, and some H. suis-infected patients show negative results on the urea breath test (UBT). MATERIALS AND METHODS: Female C57BL/6J mice were orally inoculated with mouse gastric mucosal homogenates containing H. suis strains TKY or SNTW101 isolated from a cynomolgus monkey or a patient suffering from nodular gastritis, respectively. The high-purity chromosomal DNA samples of H. suis strains TKY and SNTW101 were prepared from the infected mouse gastric mucosa. The SOLiD sequencing of two H. suis genomes enabled comparative genomics of 20 Helicobacter and 11 Campylobacter strains for the identification of the H. suis-specific nucleotide sequences. RESULTS: Oral inoculation with mouse gastric mucosal homogenates containing H. suis strains TKY and SNTW101 induced gastric MALT lymphoma and the formation of gastric lymphoid follicles, respectively, in C57BL/6J mice. Two conserved nucleotide sequences among six H. suis strains were identified and were used to design diagnostic PCR primers for the detection of H. suis. CONCLUSIONS: There was a strong association between the H. suis infection and gastric diseases in the C57BL/6 mouse model. PCR diagnosis using an H. suis-specific primer pair is a valuable method for detecting H. suis in gastric biopsy specimens.


Subject(s)
DNA Primers/genetics , Gastric Mucosa/microbiology , Helicobacter Infections/diagnosis , Helicobacter heilmannii/isolation & purification , Pathology, Molecular/methods , Polymerase Chain Reaction/methods , Animals , Biopsy , DNA, Bacterial/chemistry , DNA, Bacterial/genetics , Disease Models, Animal , Female , Genome, Bacterial , Helicobacter Infections/microbiology , Helicobacter heilmannii/genetics , Humans , Macaca fascicularis , Mice, Inbred C57BL , Molecular Sequence Data , Sequence Analysis, DNA
13.
J Appl Toxicol ; 34(5): 537-44, 2014 May.
Article in English | MEDLINE | ID: mdl-24038158

ABSTRACT

Daphnia magna has been used extensively to evaluate organism- and population-level responses to pollutants in acute toxicity and reproductive toxicity tests. We have previously reported that exposure to juvenile hormone (JH) agonists results in a reduction of reproductive function and production of male offspring in a cyclic parthenogenesis, D. magna. Recent advances in molecular techniques have provided tools to understand better the responses to pollutants in aquatic organisms, including D. magna. DNA microarray was used to evaluate gene expression profiles of neonatal daphnids exposed to JH agonists: methoprene (125, 250 and 500 ppb), fenoxycarb (0.5, 1 and 2 ppb) and epofenonane (50, 100 and 200 ppb). Exposure to these JH analogs resulted in chemical-specific patterns of gene expression. The heat map analyses based on hierarchical clustering revealed a similar pattern between treatments with a high dose of methoprene and with epofenonane. In contrast, treatment with low to middle doses of methoprene resulted in similar profiles to fenoxycarb treatments. Hemoglobin and JH epoxide hydrolase genes were clustered as JH-responsive genes. These data suggest that fenoxycarb has high activity as a JH agonist, methoprene shows high toxicity and epofenonane works through a different mechanism compared with other JH analogs, agreeing with data of previously reported toxicity tests. In conclusion, D. magna DNA microarray is useful for the classification of JH analogs and identification of JH-responsive genes.


Subject(s)
Daphnia/drug effects , Gene Expression Regulation, Developmental/drug effects , Juvenile Hormones/agonists , Methoprene/toxicity , Phenylcarbamates/toxicity , Terpenes/toxicity , Animals , Animals, Newborn , Daphnia/genetics , Daphnia/growth & development , Daphnia/metabolism , Dose-Response Relationship, Drug , Down-Regulation , Female , Gene Ontology , Male , Oligonucleotide Array Sequence Analysis , Reproduction/drug effects , Reproduction/genetics , Toxicity Tests, Acute , Toxicity Tests, Chronic , Transcriptome/drug effects , Up-Regulation
14.
Proc Natl Acad Sci U S A ; 108(4): 1501-6, 2011 Jan 25.
Article in English | MEDLINE | ID: mdl-21212362

ABSTRACT

The birth and death of genes is central to adaptive evolution, yet the underlying genome dynamics remain elusive. The availability of closely related complete genome sequences helps to follow changes in gene contents and clarify their relationship to overall genome organization. Helicobacter pylori, bacteria in our stomach, are known for their extreme genome plasticity through mutation and recombination and will make a good target for such an analysis. In comparing their complete genome sequences, we found that gain and loss of genes (loci) for outer membrane proteins, which mediate host interaction, occurred at breakpoints of chromosomal inversions. Sequence comparison there revealed a unique mechanism of DNA duplication: DNA duplication associated with inversion. In this process, a DNA segment at one chromosomal locus is copied and inserted, in an inverted orientation, into a distant locus on the same chromosome, while the entire region between these two loci is also inverted. Recognition of this and three more inversion modes, which occur through reciprocal recombination between long or short sequence similarity or adjacent to a mobile element, allowed reconstruction of synteny evolution through inversion events in this species. These results will guide the interpretation of extensive DNA sequencing results for understanding long- and short-term genome evolution in various organisms and in cancer cells.


Subject(s)
Chromosome Breakage , Chromosome Inversion/genetics , Chromosomes, Bacterial/genetics , Genes, Bacterial/genetics , Bacterial Proteins/genetics , Base Sequence , Evolution, Molecular , Gene Duplication , Helicobacter pylori/genetics , Models, Genetic , Molecular Sequence Data , Recombination, Genetic
15.
Nucleic Acids Res ; 38(Database issue): D361-5, 2010 Jan.
Article in English | MEDLINE | ID: mdl-19906735

ABSTRACT

The microbial genome database (MBGD) for comparative analysis is a platform for microbial comparative genomics based on automated ortholog group identification. A prominent feature of MBGD is that it allows users to create ortholog groups using a specified subgroup of organisms. The database is constantly updated and now contains almost 1000 genomes. To utilize the MBGD database as a comprehensive resource for investigating microbial genome diversity, we have developed the following advanced functionalities: (i) enhanced assignment of functional annotation, including external database links to each orthologous group, (ii) interface for choosing a set of genomes to compare based on phenotypic properties, (iii) the addition of more eukaryotic microbial genomes (fungi and protists) and some higher eukaryotes as references and (iv) enhancement of the MyMBGD mode, which allows users to add their own genomes to MBGD and now accepts raw genomic sequences without any annotation (in such a case, it runs a gene-finding procedure before identifying the orthologs). Some analysis functions, such as the function to find orthologs with similar phylogenetic patterns, have also been improved. MBGD is accessible at http://mbgd.genome.ad.jp/.


Subject(s)
Computational Biology/methods , Databases, Genetic , Databases, Nucleic Acid , Animals , Computational Biology/trends , Databases, Protein , Genome, Bacterial , Genome, Fungal , Genomics , Humans , Information Storage and Retrieval/methods , Internet , Phylogeny , Protein Structure, Tertiary , Sequence Alignment , Software
16.
BMC Microbiol ; 11: 104, 2011 May 16.
Article in English | MEDLINE | ID: mdl-21575176

ABSTRACT

BACKGROUND: The genome of Helicobacter pylori, an oncogenic bacterium in the human stomach, rapidly evolves and shows wide geographical divergence. The high incidence of stomach cancer in East Asia might be related to bacterial genotype. We used newly developed comparative methods to follow the evolution of East Asian H. pylori genomes using 20 complete genome sequences from Japanese, Korean, Amerind, European, and West African strains. RESULTS: A phylogenetic tree of concatenated well-defined core genes supported divergence of the East Asian lineage (hspEAsia; Japanese and Korean) from the European lineage ancestor, and then from the Amerind lineage ancestor. Phylogenetic profiling revealed a large difference in the repertoire of outer membrane proteins (including oipA, hopMN, babABC, sabAB and vacA-2) through gene loss, gain, and mutation. All known functions associated with molybdenum, a rare element essential to nearly all organisms that catalyzes two-electron-transfer oxidation-reduction reactions, appeared to be inactivated. Two pathways linking acetyl~CoA and acetate appeared intact in some Japanese strains. Phylogenetic analysis revealed greater divergence between the East Asian (hspEAsia) and the European (hpEurope) genomes in proteins in host interaction, specifically virulence factors (tipα), outer membrane proteins, and lipopolysaccharide synthesis (human Lewis antigen mimicry) enzymes. Divergence was also seen in proteins in electron transfer and translation fidelity (miaA, tilS), a DNA recombinase/exonuclease that recognizes genome identity (addA), and DNA/RNA hybrid nucleases (rnhAB). Positively selected amino acid changes between hspEAsia and hpEurope were mapped to products of cagA, vacA, homC (outer membrane protein), sotB (sugar transport), and a translation fidelity factor (miaA). Large divergence was seen in genes related to antibiotics: frxA (metronidazole resistance), def (peptide deformylase, drug target), and ftsA (actin-like, drug target). CONCLUSIONS: These results demonstrate dramatic genome evolution within a species, especially in likely host interaction genes. The East Asian strains appear to differ greatly from the European strains in electron transfer and redox reactions. These findings also suggest a model of adaptive evolution through proteome diversification and selection through modulation of translational fidelity. The results define H. pylori East Asian lineages and provide essential information for understanding their pathogenesis and designing drugs and therapies that target them.


Subject(s)
Evolution, Molecular , Helicobacter Infections/complications , Helicobacter Infections/epidemiology , Helicobacter pylori/genetics , Helicobacter pylori/pathogenicity , Stomach Neoplasms/epidemiology , Stomach Neoplasms/microbiology , Adaptation, Biological , Asia, Eastern/epidemiology , Genome, Bacterial , Genotype , Helicobacter Infections/microbiology , Helicobacter pylori/isolation & purification , Humans , Phylogeny , Polymorphism, Genetic
17.
DNA Res ; 28(1)2021 Jan 19.
Article in English | MEDLINE | ID: mdl-33367889

ABSTRACT

We present here the second complete genome of anaerobic ammonium oxidation (anammox) bacterium, Candidatus (Ca.) Brocadia pituitae, along with those of a nitrite oxidizer and two incomplete denitrifiers from the anammox bacterial community (ABC) metagenome. Although NO2- reduction to NO is considered to be the first step in anammox, Ca. B. pituitae lacks nitrite reductase genes (nirK and nirS) responsible for this reaction. Comparative genomics of Ca. B. pituitae with Ca. Kuenenia stuttgartiensis and six other anammox bacteria with nearly complete genomes revealed that their core genome structure contains 1,152 syntenic orthologues. But nitrite reductase genes were absent from the core, whereas two other Brocadia species possess nirK and these genes were horizontally acquired from multiple lineages. In contrast, at least five paralogous hydroxylamine oxidoreductase genes containing candidate ones (hao2 and hao3) encoding another nitrite reductase were observed in the core. Indeed, these two genes were also significantly expressed in Ca. B. pituitae as in other anammox bacteria. Because many nirS and nirK genes have been detected in the ABC metagenome, Ca. B. pituitae presumably utilises not only NO supplied by the ABC members but also NO and/or NH2OH by self-production for anammox metabolism.


Subject(s)
Ammonium Compounds/metabolism , Bacteria/genetics , Genome, Bacterial , Bacteria/metabolism , Bacteria, Anaerobic/genetics , Bacteria, Anaerobic/metabolism , Bacteria, Anaerobic/physiology , Metagenome , Nitrite Reductases , Oxidoreductases , Sequence Analysis, DNA
18.
Nat Commun ; 11(1): 2481, 2020 05 18.
Article in English | MEDLINE | ID: mdl-32424145

ABSTRACT

Photosynthetic light-harvesting complexes (LHCs) play a pivotal role in collecting solar energy for photochemical reactions in photosynthesis. One of the major LHCs are fucoxanthin chlorophyll a/c-binding proteins (FCPs) present in diatoms, a group of organisms having important contribution to the global carbon cycle. Here, we report a 2.40-Å resolution structure of the diatom photosystem I (PSI)-FCPI supercomplex by cryo-electron microscopy. The supercomplex is composed of 16 different FCPI subunits surrounding a monomeric PSI core. Each FCPI subunit showed different protein structures with different pigment contents and binding sites, and they form a complicated pigment-protein network together with the PSI core to harvest and transfer the light energy efficiently. In addition, two unique, previously unidentified subunits were found in the PSI core. The structure provides numerous insights into not only the light-harvesting strategy in diatom PSI-FCPI but also evolutionary dynamics of light harvesters among oxyphototrophs.


Subject(s)
Diatoms/metabolism , Light-Harvesting Protein Complexes/chemistry , Light-Harvesting Protein Complexes/metabolism , Photosystem I Protein Complex/chemistry , Photosystem I Protein Complex/metabolism , Chlorophyll/metabolism , Chlorophyll Binding Proteins/chemistry , Chlorophyll Binding Proteins/ultrastructure , Energy Transfer , Light-Harvesting Protein Complexes/ultrastructure , Models, Molecular , Photosystem I Protein Complex/ultrastructure , Protein Binding , Protein Subunits/metabolism , Structure-Activity Relationship
19.
J Bacteriol ; 191(4): 1180-90, 2009 Feb.
Article in English | MEDLINE | ID: mdl-19074389

ABSTRACT

We isolated the methicillin-resistant Macrococcus caseolyticus strain JCSC5402 from animal meat in a supermarket and determined its whole-genome nucleotide sequence. This is the first report on the genome analysis of a macrococcal species that is evolutionarily closely related to the human pathogens Staphylococcus aureus and Bacillus anthracis. The essential biological pathways of M. caseolyticus are similar to those of staphylococci. However, the species has a small chromosome (2.1 MB) and lacks many sugar and amino acid metabolism pathways and a plethora of virulence genes that are present in S. aureus. On the other hand, M. caseolyticus possesses a series of oxidative phosphorylation machineries that are closely related to those in the family Bacillaceae. We also discovered a probable primordial form of a Macrococcus methicillin resistance gene complex, mecIRAm, on one of the eight plasmids harbored by the M. caseolyticus strain. This is the first finding of a plasmid-encoding methicillin resistance gene. Macrococcus is considered to reflect the genome of ancestral bacteria before the speciation of staphylococcal species and may be closely associated with the origin of the methicillin resistance gene complex of the notorious human pathogen methicillin-resistant S. aureus.


Subject(s)
Staphylococcaceae/genetics , Animals , Anti-Bacterial Agents/pharmacology , Base Sequence , Chromosome Mapping , Chromosomes, Bacterial , Drug Resistance, Bacterial , Genes, Bacterial , Genome, Bacterial , Microbial Sensitivity Tests , Molecular Sequence Data , Phylogeny , Staphylococcaceae/drug effects , Staphylococcaceae/metabolism , Staphylococcus/genetics
20.
Nucleic Acids Res ; 35(Database issue): D343-6, 2007 Jan.
Article in English | MEDLINE | ID: mdl-17135196

ABSTRACT

The microbial genome database for comparative analysis (MBGD) is a comprehensive platform for microbial comparative genomics. The central function of MBGD is to create orthologous groups among multiple genomes from precomputed all-against-all similarity relationships using the DomClust algorithm. The database now contains >300 published genomes and the number continues to grow. For researchers who are interested in ongoing genome projects, we have now started a new service called 'My MBGD,' which allows users to add their own genome sequences to MBGD for the purpose of identifying orthologs among both the new and the existing genomes. Furthermore, in order to make available the rapidly accumulating information on closely related genome sequences, we enhanced the interface for pairwise genome comparisons using the CGAT interface, which allows users to see nucleotide sequence alignments of non-coding as well as coding regions. MBGD is available at http://mbgd.genome.ad.jp/.


Subject(s)
Databases, Nucleic Acid , Genome, Archaeal , Genome, Bacterial , Algorithms , Genomics , Internet , Sequence Alignment , User-Computer Interface
SELECTION OF CITATIONS
SEARCH DETAIL