Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 28
Filter
1.
J Am Soc Nephrol ; 33(8): 1448-1458, 2022 08.
Article in English | MEDLINE | ID: mdl-35396262

ABSTRACT

Full-length parathyroid hormone (PTH 1-84) is crucial for the regulation of calcium and phosphate homeostasis and bone remodeling. PTH 1-84 is metabolized into various PTH fragments, which are measured with varying levels of efficiency by PTH immunoassays. These PTH fragments, which increase in serum as CKD progresses, could potentially modulate the effects of PTH 1-84 and contribute to CKD-associated bone disorders. To obtain a true biologic representation of total PTH bioactivity, it is necessary to measure not only PTH 1-84 but also PTH fragments that are present in circulation. Traditional second-generation PTH immunoassays collectively measure PTH 1-84, PTH fragments, and post-translationally modified PTH 1-84, making it difficult to accurately predict the character of underlying renal osteodystrophy. This review highlights current advances in methods available for PTH measurement and the clinical relevance of PTH fragments in CKD. We emphasize the usefulness of mass spectrometry as a potential reference method for PTH measurement.


Subject(s)
Chronic Kidney Disease-Mineral and Bone Disorder , Renal Insufficiency, Chronic , Bone and Bones , Humans , Mass Spectrometry , Parathyroid Hormone , Peptide Fragments
2.
Metabolomics ; 18(4): 24, 2022 04 09.
Article in English | MEDLINE | ID: mdl-35397018

ABSTRACT

INTRODUCTION: The metabolomics quality assurance and quality control consortium (mQACC) is enabling the identification, development, prioritization, and promotion of suitable reference materials (RMs) to be used in quality assurance (QA) and quality control (QC) for untargeted metabolomics research. OBJECTIVES: This review aims to highlight current RMs, and methodologies used within untargeted metabolomics and lipidomics communities to ensure standardization of results obtained from data analysis, interpretation and cross-study, and cross-laboratory comparisons. The essence of the aims is also applicable to other 'omics areas that generate high dimensional data. RESULTS: The potential for game-changing biochemical discoveries through mass spectrometry-based (MS) untargeted metabolomics and lipidomics are predicated on the evolution of more confident qualitative (and eventually quantitative) results from research laboratories. RMs are thus critical QC tools to be able to assure standardization, comparability, repeatability and reproducibility for untargeted data analysis, interpretation, to compare data within and across studies and across multiple laboratories. Standard operating procedures (SOPs) that promote, describe and exemplify the use of RMs will also improve QC for the metabolomics and lipidomics communities. CONCLUSIONS: The application of RMs described in this review may significantly improve data quality to support metabolomics and lipidomics research. The continued development and deployment of new RMs, together with interlaboratory studies and educational outreach and training, will further promote sound QA practices in the community.


Subject(s)
Lipidomics , Metabolomics , Mass Spectrometry/methods , Metabolomics/methods , Quality Control , Reproducibility of Results
3.
Clin Chem ; 67(6): 843-853, 2021 06 01.
Article in English | MEDLINE | ID: mdl-33693557

ABSTRACT

BACKGROUND: The precise concentrations of full-length parathyroid hormone (PTH1-84) and the identity and concentrations of PTH fragments in patients with various stages of chronic renal failure are unknown. METHODS: We developed a liquid chromatography-high resolution mass spectrometry (LC-HRMS) method to characterize and quantify PTH1-84 and PTH fragments in serum of 221 patients with progressive renal dysfunction. Following capture by matrix-bound amino-terminal or carboxyl-terminal region-specific antibodies and elution from matrix, PTH1-84 and PTH fragments were identified and quantitated using LC-HRMS. PTH was simultaneously measured using an intact PTH (iPTH) immunoassay. RESULTS: Full-length PTH1-84 and 8 PTH fragments (PTH28-84, 34-77, 34-84, 37-77, 37-84, 38-77, 38-84, and 45-84) were unequivocally identified and were shown to increase significantly when an eGFR declined to ≤17-23 mL/min/1.73m2. Serum concentrations of PTH1-84 were similar when measured by LC-HRMS following capture by amino-terminal or carboxyl-terminal immunocapture methods. In patients with an eGFR of <30 mL/min/1.73 m2, serum PTH concentrations measured using LC-HRMS were significantly lower than PTH measured using an iPTH immunoassay. PTH7-84 and oxidized forms of PTH1-84 were below the limit of detection (30 and 50 pg/mL, respectively). CONCLUSIONS: LC-HRMS identifies circulating PTH1-84, carboxyl-terminal PTH fragments, and mid-region PTH fragments, in patients with progressive renal failure. Serum PTH1-84 and its fragments markedly rise when an eGFR decreases to ≤17-23 mL/min/1.73 m2. PTH concentrations measured using LC-HRMS tend to be lower than those measured using an iPTH immunoassay, particularly in severe chronic renal failure. Our data do not support the existence of circulating PTH7-84 and oxidized PTH1-84.


Subject(s)
Kidney Failure, Chronic , Parathyroid Hormone , Chromatography, Liquid , ErbB Receptors/chemistry , ErbB Receptors/metabolism , Humans , Mass Spectrometry , Peptide Fragments/chemistry , Peptide Fragments/metabolism
4.
Metabolomics ; 16(5): 56, 2020 04 19.
Article in English | MEDLINE | ID: mdl-32307636

ABSTRACT

BACKGROUND: Understanding the interaction between organisms and the environment is important for predicting and mitigating the effects of global phenomena such as climate change, and the fate, transport, and health effects of anthropogenic pollutants. By understanding organism and ecosystem responses to environmental stressors at the molecular level, mechanisms of toxicity and adaptation can be determined. This information has important implications in human and environmental health, engineering biotechnologies, and understanding the interaction between anthropogenic induced changes and the biosphere. One class of molecules with unique promise for environmental science are lipids; lipids are highly abundant and ubiquitous across nearly all organisms, and lipid profiles often change drastically in response to external stimuli. These changes allow organisms to maintain essential biological functions, for example, membrane fluidity, as they adapt to a changing climate and chemical environment. Lipidomics can help scientists understand the historical and present biofeedback processes in climate change and the biogeochemical processes affecting nutrient cycles. Lipids can also be used to understand how ecosystems respond to historical environmental changes with lipid signatures dating back to hundreds of millions of years, which can help predict similar changes in the future. In addition, lipids are direct targets of environmental stressors, for example, lipids are easily prone to oxidative damage, which occurs during exposure to most toxins. AIM OF REVIEW: This is the first review to summarize the current efforts to comprehensively measure lipids to better understand the interaction between organisms and their environment. This review focuses on lipidomic applications in the arenas of environmental toxicology and exposure assessment, xenobiotic exposures and health (e.g., obesity), global climate change, and nutrient cycles. Moreover, this review summarizes the use of and the potential for lipidomics in engineering biotechnologies for the remediation of persistent compounds and biofuel production. KEY SCIENTIFIC CONCEPT: With the preservation of certain lipids across millions of years and our ever-increasing understanding of their diverse biological roles, lipidomic-based approaches provide a unique utility to increase our understanding of the contemporary and historical interactions between organisms, ecosystems, and anthropogenically-induced environmental changes.


Subject(s)
Climate Change , Ecosystem , Lipidomics , Lipids , Humans
5.
BMC Bioinformatics ; 20(1): 217, 2019 Apr 29.
Article in English | MEDLINE | ID: mdl-31035918

ABSTRACT

BACKGROUND: Lipidomics, the comprehensive measurement of lipids within a biological system or substrate, is an emerging field with significant potential for improving clinical diagnosis and our understanding of health and disease. While lipids diverse biological roles contribute to their clinical utility, the diversity of lipid structure and concentrations prove to make lipidomics analytically challenging. Without internal standards to match each lipid species, researchers often apply individual internal standards to a broad range of related lipids. To aid in standardizing and automating this relative quantitation process, we developed LipidMatch Normalizer (LMN) http://secim.ufl.edu/secim-tools/ which can be used in most open source lipidomics workflows. RESULTS: LMN uses a ranking system (1-3) to assign lipid standards to target analytes. A ranking of 1 signifies that both the lipid class and adduct of the internal standard and target analyte match, while a ranking of 3 signifies that neither the adduct or class match. If multiple internal standards are provided for a lipid class, standards with the closest retention time to the target analyte will be chosen. The user can also signify which lipid classes an internal standard represents, for example indicating that ether-linked phosphatidylcholine can be semi-quantified using phosphatidylcholine. LMN is designed to work with any lipid identification software and feature finding software, and in this study is used to quantify lipids in NIST SRM 1950 human plasma annotated using LipidMatch and MZmine. CONCLUSIONS: LMN can be integrated into an open source workflow which completes all data processing steps including feature finding, annotation, and quantification for LC-MS/MS studies. Using LMN we determined that in certain cases the use of peak height versus peak area, certain adducts, and negative versus positive polarity data can have major effects on the final concentration obtained.


Subject(s)
Lipids/analysis , Software , Algorithms , Chromatography, High Pressure Liquid , Humans , Lipids/chemistry , Tandem Mass Spectrometry
6.
Metabolomics ; 15(3): 38, 2019 03 05.
Article in English | MEDLINE | ID: mdl-30838461

ABSTRACT

INTRODUCTION: Lipidomics is an emerging field with great promise for biomarker and mechanistic studies due to lipids diverse biological roles. Clinical research applying lipidomics is drastically increasing, with research methods and tools developed for clinical applications equally promising for wildlife studies. OBJECTIVES: Limited research to date has applied lipidomics, especially of the intact lipidome, to wildlife studies. Therefore, we examine the application of lipidomics for in situ studies on Mozambique tilapia (Oreochromis mossambicus) in Loskop Dam, South Africa. Wide-scale mortality events of aquatic life associated with an environmentally-derived inflammatory disease, pansteatitis, have occurred in this area. METHODS: The lipidome of adipose tissue (n = 31) and plasma (n = 51) from tilapia collected from Loskop Dam were characterized using state of the art liquid chromatography coupled to high-resolution tandem mass spectrometry. RESULTS: Lipid profiles reflected pansteatitis severity and were significantly different between diseased and healthy individuals. Over 13 classes of lipids associated with inflammation, cell death, and/or oxidative damage were upregulated in pansteatitis-affected adipose tissue, including ether-lipids, short-chained triglyceride oxidation products, sphingolipids, and acylcarnitines. Ceramides showed a 1000-fold increase in the most affected adipose tissues and were sensitive to disease severity. In plasma, triglycerides were found to be downregulated in pansteatitis-affected tilapia. CONCLUSION: Intact lipidomics provided useful mechanistic data and possible biomarkers of pansteatitis. Lipids pointed to upregulated inflammatory pathways, and ceramides serve as promising biomarker candidates for pansteatitis. As comprehensive coverage of the lipidome aids in the elucidation of possible disease mechanisms, application of lipidomics could be applied to the understanding of other environmentally-derived inflammatory conditions, such as those caused by obesogens.


Subject(s)
Lipidomics/methods , Tilapia/metabolism , Animals , Animals, Wild , Biomarkers , Chromatography, Liquid , Disease Outbreaks , Lipids/chemistry , South Africa/epidemiology , Tandem Mass Spectrometry , Tilapia/parasitology
7.
Metabolomics ; 14(5): 53, 2018 03 20.
Article in English | MEDLINE | ID: mdl-30830346

ABSTRACT

INTRODUCTION: Efforts to harmonize lipidomic methodologies have been limited within the community. Here, we aimed to capitalize on the recent National Institute of Standards and Technology lipidomics interlaboratory comparison exercise by implementing a questionnaire that assessed current methodologies, quantitation strategies, standard operating procedures (SOPs), and quality control activities employed by the lipidomics community. OBJECTIVES: Lipidomics is a rapidly developing field with diverse applications. At present, there are no community-vetted methods to assess measurement comparability or data quality. Thus, a major impetus of this questionnaire was to profile current efforts, highlight areas of need, and establish future objectives in an effort to harmonize lipidomics workflows. METHODS: The 54-question survey inquired about laboratory demographics, lipidomic methodologies and SOPs, analytical platforms, quantitation, reference materials, quality control procedures, and opinions regarding challenges existing within the community. RESULTS: A total of 125 laboratories participated in the questionnaire. A broad overview of results highlighted a wide methodological diversity within current lipidomic workflows. The impact of this diversity on lipid measurement and quantitation is currently unknown and needs to be explored further. While some laboratories do incorporate SOPs and quality control activities, these concepts have not been fully embraced by the community. The top five perceived challenges within the lipidomics community were a lack of standardization amongst methods/protocols, lack of lipid standards, software/data handling and quantification, and over-reporting/false positives. CONCLUSION: The questionnaire provided an overview of current lipidomics methodologies and further promoted the need for community-accepted guidelines and protocols. The questionnaire also served as a platform to help determine and prioritize metrological issues to be investigated.


Subject(s)
Lipids/standards , Reference Standards , Data Accuracy , Humans , Laboratories , Lipid Metabolism/physiology , Metabolomics/methods , Quality Control , Research/standards , Research Design/standards , Surveys and Questionnaires , Workflow
8.
BMC Bioinformatics ; 18(1): 331, 2017 Jul 10.
Article in English | MEDLINE | ID: mdl-28693421

ABSTRACT

BACKGROUND: Lipids are ubiquitous and serve numerous biological functions; thus lipids have been shown to have great potential as candidates for elucidating biomarkers and pathway perturbations associated with disease. Methods expanding coverage of the lipidome increase the likelihood of biomarker discovery and could lead to more comprehensive understanding of disease etiology. RESULTS: We introduce LipidMatch, an R-based tool for lipid identification for liquid chromatography tandem mass spectrometry workflows. LipidMatch currently has over 250,000 lipid species spanning 56 lipid types contained in in silico fragmentation libraries. Unique fragmentation libraries, compared to other open source software, include oxidized lipids, bile acids, sphingosines, and previously uncharacterized adducts, including ammoniated cardiolipins. LipidMatch uses rule-based identification. For each lipid type, the user can select which fragments must be observed for identification. Rule-based identification allows for correct annotation of lipids based on the fragments observed, unlike typical identification based solely on spectral similarity scores, where over-reporting structural details that are not conferred by fragmentation data is common. Another unique feature of LipidMatch is ranking lipid identifications for a given feature by the sum of fragment intensities. For each lipid candidate, the intensities of experimental fragments with exact mass matches to expected in silico fragments are summed. The lipid identifications with the greatest summed intensity using this ranking algorithm were comparable to other lipid identification software annotations, MS-DIAL and Greazy. For example, for features with identifications from all 3 software, 92% of LipidMatch identifications by fatty acyl constituents were corroborated by at least one other software in positive mode and 98% in negative ion mode. CONCLUSIONS: LipidMatch allows users to annotate lipids across a wide range of high resolution tandem mass spectrometry experiments, including imaging experiments, direct infusion experiments, and experiments employing liquid chromatography. LipidMatch leverages the most extensive in silico fragmentation libraries of freely available software. When integrated into a larger lipidomics workflow, LipidMatch may increase the probability of finding lipid-based biomarkers and determining etiology of disease by covering a greater portion of the lipidome and using annotation which does not over-report biologically relevant structural details of identified lipid molecules.


Subject(s)
Lipids/analysis , Software , Tandem Mass Spectrometry , Algorithms , Automation , Chromatography, High Pressure Liquid , Humans , Lipids/blood , Molecular Weight
9.
J Lipid Res ; 58(12): 2275-2288, 2017 12.
Article in English | MEDLINE | ID: mdl-28986437

ABSTRACT

As the lipidomics field continues to advance, self-evaluation within the community is critical. Here, we performed an interlaboratory comparison exercise for lipidomics using Standard Reference Material (SRM) 1950-Metabolites in Frozen Human Plasma, a commercially available reference material. The interlaboratory study comprised 31 diverse laboratories, with each laboratory using a different lipidomics workflow. A total of 1,527 unique lipids were measured across all laboratories and consensus location estimates and associated uncertainties were determined for 339 of these lipids measured at the sum composition level by five or more participating laboratories. These evaluated lipids detected in SRM 1950 serve as community-wide benchmarks for intra- and interlaboratory quality control and method validation. These analyses were performed using nonstandardized laboratory-independent workflows. The consensus locations were also compared with a previous examination of SRM 1950 by the LIPID MAPS consortium. While the central theme of the interlaboratory study was to provide values to help harmonize lipids, lipid mediators, and precursor measurements across the community, it was also initiated to stimulate a discussion regarding areas in need of improvement.


Subject(s)
Benchmarking , Laboratory Proficiency Testing/statistics & numerical data , Lipids/blood , Humans , International Cooperation , Lipid Metabolism/physiology , Lipids/standards , Observer Variation , Reference Standards , Reproducibility of Results
10.
Anal Chem ; 89(24): 13069-13073, 2017 12 19.
Article in English | MEDLINE | ID: mdl-29148710

ABSTRACT

As advances in analytical separation techniques, mass spectrometry instrumentation, and data processing platforms continue to spur growth in the lipidomics field, more structurally unique lipid species are detected and annotated. The lipidomics community is in need of benchmark reference values to assess the validity of various lipidomics workflows in providing accurate quantitative measurements across the diverse lipidome. LipidQC addresses the harmonization challenge in lipid quantitation by providing a semiautomated process, independent of analytical platform, for visual comparison of experimental results of National Institute of Standards and Technology Standard Reference Material (SRM) 1950, "Metabolites in Frozen Human Plasma", against benchmark consensus mean concentrations derived from the NIST Lipidomics Interlaboratory Comparison Exercise.


Subject(s)
Lipids/analysis , Humans , Mass Spectrometry/standards , Reference Standards
14.
Clin Chim Acta ; 515: 44-51, 2021 Apr.
Article in English | MEDLINE | ID: mdl-33412144

ABSTRACT

Parathyroid hormone (PTH) determination is of greatest importance for patients suffering from parathyroid gland disorders and for the follow-up of bone turnover in patients suffering from chronic kidney disease (CKD). Two generations of PTH assays are simultaneously present on the market for PTH quantification. As these assays are not yet standardized, this results in a significant level of confusion in the care of CKD patients. One key objective of the IFCC Committee for Bone Metabolism is to improve this situation. In this position paper, we will highlight the current state of PTH testing and propose a pathway to ultimately overcome issues resulting from PTH assay variability.


Subject(s)
Kidney Failure, Chronic , Renal Insufficiency, Chronic , Humans , Immunoassay , Parathyroid Hormone , Reference Standards
15.
Lipids ; 56(1): 3-16, 2021 01.
Article in English | MEDLINE | ID: mdl-32519378

ABSTRACT

Lipidomics is a rapidly growing field, fueled by developments in analytical instrumentation and bioinformatics. To date, most researchers and industries have employed their own lipidomics workflows without a consensus on best practices. Without a community-wide consensus on best practices for the prevention of lipid degradation and transformations through sample collection and analysis, it is difficult to assess the quality of lipidomics data and hence trust results. Clinical studies often rely on samples being stored for weeks or months until they are analyzed, but inappropriate sampling techniques, storage temperatures, and analytical protocols can result in the degradation of complex lipids and the generation of oxidized or hydrolyzed metabolite artifacts. While best practices for lipid stability are sample dependent, it is generally recommended that strategies during sample preparation capable of quenching enzymatic activity and preventing oxidation should be considered. In addition, after sample preparation, lipid extracts should be stored in organic solvents with antioxidants at -20 °C or lower in an airtight container without exposure to light or oxygen. This will reduce or eliminate sublimation, and chemically and physically induced molecular transformations such as oxidation, enzymatic transformation, and photon/heat-induced degradation. This review explores the available literature on lipid stability, with a particular focus on human health and/or clinical lipidomic applications. Specifically, this includes a description of known mechanisms of lipid degradation, strategies, and considerations for lipid storage, as well as current efforts for standardization and quality insurance of protocols.


Subject(s)
Lipidomics/standards , Lipids/standards , Animals , Humans , Lipid Metabolism , Lipids/chemistry
16.
Clin Chim Acta ; 515: 16-20, 2021 Apr.
Article in English | MEDLINE | ID: mdl-33382995

ABSTRACT

Procollagen type I N-propeptide (PINP) and the C-terminal telopeptide of type I collagen (ß-CTX) in blood have been designated as reference bone turnover markers in osteoporosis by the International Osteoporosis Foundation (IOF) and International Federation of Clinical Chemistry and Laboratory Medicine (IFCC). The IFCC Committee on Bone Metabolism (C-BM) has examined current commercial assays and performed a multicentre study to examine the agreement between assays for PINP and ß-CTX in serum and plasma. The results of these studies will inform our work towards the harmonization of PINP assays and the standardization of ß-CTX assays in blood, with the development of common calibrators and reference measurement procedures in collaboration with the reagent manufacturing industry. Successful achievement of these goals will help develop universally acceptable practice guidelines for the management of osteoporosis with the inclusion of common reference intervals and treatment targets for PINP and ß-CTX.


Subject(s)
Peptide Fragments , Procollagen , Biomarkers , Bone Remodeling , Collagen Type I , Humans , Peptides
17.
Clin Chim Acta ; 517: 171-197, 2021 Jun.
Article in English | MEDLINE | ID: mdl-33713690

ABSTRACT

Vitamin D, an important hormone with a central role in calcium and phosphate homeostasis, is required for bone and muscle development as well as preservation of musculoskeletal function. The most abundant vitamin D metabolite is 25-hydroxyvitamin D [25(OH)D], which is currently considered the best marker to evaluate overall vitamin D status. 25(OH)D is therefore the most commonly measured metabolite in clinical practice. However, several other metabolites, although not broadly measured, are useful in certain clinical situations. Vitamin D and all its metabolites are circulating in blood bound to vitamin D binding protein, (VDBP). This highly polymorphic protein is not only the major transport protein which, along with albumin, binds over 99% of the circulating vitamin D metabolites, but also participates in the transport of the 25(OH)D into the cell via a megalin/cubilin complex. The accurate measurement of 25(OH)D has proved a difficult task. Although a reference method and standardization program are available for 25(OH)D, the other vitamin D metabolites still lack this. Interpretation of results, creation of clinical supplementation, and generation of therapeutic guidelines require not only accurate measurements of vitamin D metabolites, but also the accurate measurements of several other "molecules" related with bone metabolism. IFCC understood this priority and a committee has been established with the task to support and continue the standardization processes of vitamin D metabolites along with other bone-related biomarkers. In this review, we present the position of this IFCC Committee on Bone Metabolism on the latest developments concerning the measurement and standardization of vitamin D metabolites and its binding protein, as well as clinical indications for their measurement and interpretation of the results.


Subject(s)
Bone and Bones/metabolism , Vitamin D-Binding Protein , Vitamin D , Biomarkers , Calcifediol , Humans
18.
Nutrients ; 13(2)2021 Jan 28.
Article in English | MEDLINE | ID: mdl-33525653

ABSTRACT

Currently the 25-hydroxy vitamin D (25(OH)D) concentration is thought to be the best estimate of the vitamin D status of an individual. Unfortunately, its measurement remains complex, despite recent technological advances. We evaluated the biological variation (BV) of 25(OH)D in order to set analytical performance specifications (APS) for measurement uncertainty (MU). Six European laboratories recruited 91 healthy participants. The 25(OH)D concentrations in K3-EDTA plasma were examined weekly for up to 10 weeks in duplicate on a Lumipulse G1200 (Fujirebio, Tokyo, Japan). The linear regression of the mean 25(OH)D concentrations at each blood collection showed that participants were not in a steady state. The dissection of the 10-sample collection into two subsets, namely collections 1-5 and 6-10, did not allow for correction of the lack of homogeneity: estimates of the within-subject BV ranged from 5.8% to 7.1% and the between-subject BV ranged from 25.0% to 39.2%. Methods that would differentiate a difference induced by 25(OH)D supplementation at p < 0.05 should have MU < 13.6%, while at p < 0.01, the MU should be <9.6%. The development of APS using BV assumes a steady state of patients. The findings in this study suggest that patients are not in steady state. Therefore, APS that are based on MU appear to be more appropriate.


Subject(s)
Vitamin D/analogs & derivatives , Blood Specimen Collection , Humans , Linear Models , Models, Theoretical , Uncertainty , Vitamin D/analysis , Vitamin D/blood
19.
J Am Soc Mass Spectrom ; 31(11): 2270-2276, 2020 Nov 04.
Article in English | MEDLINE | ID: mdl-32931276

ABSTRACT

A sensitive, selective, and quantitative method incorporating high-resolution mass spectrometry was developed for the determination of blood urea nitrogen (BUN) in bronchoalveolar lavage fluid. The method requires no sample cleanup or derivatization prior to analysis. High-performance liquid chromatography (HPLC) on a Hypersil Gold PFP column (100 × 3 mm, 3 µm particle size) connected to a C18 guard column was employed for a 10 min chromatographic separation. The detection of urea was achieved using a Thermo Scientific Q-Exactive Plus instrument incorporating selected ion monitoring (SIM) modes for the protonated adduct of urea. The urea analytical measuring range for the method is 0.047-17.134 mg/dL, resulting in a BUN analytical measurement range of 0.022-8.007 mg/dL, which allows for quantitation over 3 orders of magnitude (R2 = 0.999). In addition, the method is suitable for small sample volumes (15 µL) with a high level of accuracy, precision, and specificity.


Subject(s)
Bronchoalveolar Lavage Fluid/chemistry , Chromatography, High Pressure Liquid/methods , Mass Spectrometry/methods , Nitrogen/analysis , Urea/analysis , Humans , Limit of Detection
20.
Sci Rep ; 9(1): 1530, 2019 02 06.
Article in English | MEDLINE | ID: mdl-30728429

ABSTRACT

Evidence indicates that obesity can be promoted by chemical 'obesogens' that drive adiposity, hunger, inflammation and suppress metabolism. Dioctyl sodium sulfosuccinate (DOSS), a lipid emulsifier and candidate obesogen in vitro, is widely used in processed foods, cosmetics and as stool softener medicines commonly used during pregnancy. In vivo testing of DOSS was performed in a developmental origins of adult obesity model. Pregnant mice were orally administered vehicle control or DOSS at times and doses comparable to stool softener use during human pregnancy. All weaned offspring consumed only standard diet. Adult male but not female offspring of DOSS-treated dams showed significantly increased body mass, overall and visceral fat masses, and decreased bone area. They exhibited significant decreases in plasma adiponectin and increases in leptin, glucose intolerance and hyperinsulinemia. Inflammatory IL-6 was elevated, as was adipose Cox2 and Nox4 gene expressions, which may be associated with promoter DNA methylation changes. Multiple significant phospholipid/sterol lipid increases paralleled profiles from long-term high-fat diet induced obesity in males. Collectively, developmental DOSS exposure leads to increased adult adiposity, inflammation, metabolic disorder and dyslipidemia in offspring fed a standard diet, suggesting that pharmaceutical and other sources of DOSS taken during human pregnancy might contribute to long-term obesity-related health concerns in offspring.


Subject(s)
Adiposity/drug effects , Dioctyl Sulfosuccinic Acid/toxicity , Dyslipidemias/pathology , Inflammation/pathology , Metabolic Diseases/pathology , Obesity/pathology , Prenatal Exposure Delayed Effects/pathology , Animals , Dyslipidemias/chemically induced , Female , Glucose Intolerance/chemically induced , Glucose Intolerance/pathology , Inflammation/chemically induced , Male , Metabolic Diseases/chemically induced , Mice , Mice, Inbred C57BL , Obesity/chemically induced , Pregnancy , Prenatal Exposure Delayed Effects/chemically induced , Surface-Active Agents/toxicity
SELECTION OF CITATIONS
SEARCH DETAIL