Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters

Database
Country/Region as subject
Language
Affiliation country
Publication year range
1.
Blood ; 127(24): 2980-90, 2016 06 16.
Article in English | MEDLINE | ID: mdl-27118452

ABSTRACT

Myeloablative autologous hematopoietic stem cell transplantation (HSCT) is a mainstay of therapy for relapsed intermediate-grade B-cell non-Hodgkin lymphoma (NHL); however, relapse rates are high. In phase 1 studies designed to improve long-term remission rates, we administered adoptive T-cell immunotherapy after HSCT, using ex vivo-expanded autologous central memory-enriched T cells (TCM) transduced with lentivirus expressing CD19-specific chimeric antigen receptors (CARs). We present results from 2 safety/feasibility studies, NHL1 and NHL2, investigating different T-cell populations and CAR constructs. Engineered TCM-derived CD19 CAR T cells were infused 2 days after HSCT at doses of 25 to 200 × 10(6) in a single infusion. In NHL1, 8 patients safely received T-cell products engineered from enriched CD8(+) TCM subsets, expressing a first-generation CD19 CAR containing only the CD3ζ endodomain (CD19R:ζ). Four of 8 patients (50%; 95% confidence interval [CI]: 16-84%) were progression free at both 1 and 2 years. In NHL2, 8 patients safely received T-cell products engineered from enriched CD4(+) and CD8(+) TCM subsets and expressing a second-generation CD19 CAR containing the CD28 and CD3ζ endodomains (CD19R:28ζ). Six of 8 patients (75%; 95% CI: 35-97%) were progression free at 1 year. The CD4(+)/CD8(+) TCM-derived CD19 CAR T cells (NHL2) exhibited improvement in expansion; however, persistence was ≤28 days, similar to that seen by others using CD28 CARs. Neither cytokine release syndrome nor delayed hematopoietic engraftment was observed in either trial. These data demonstrate the safety and feasibility of CD19 CAR TCM therapy after HSCT. Trials were registered at www.clinicaltrials.gov as #NCT01318317 and #NCT01815749.


Subject(s)
Hematopoietic Stem Cell Transplantation , Immunologic Memory , Immunotherapy, Adoptive/methods , Lymphoma, B-Cell/therapy , T-Lymphocytes/transplantation , Adult , Aged , Antigens, CD19/metabolism , Cell Count , Combined Modality Therapy/adverse effects , Female , Hematopoietic Stem Cell Transplantation/adverse effects , Hematopoietic Stem Cell Transplantation/methods , Humans , Immunotherapy, Adoptive/adverse effects , Lymphoma, B-Cell/immunology , Lymphoma, Non-Hodgkin/immunology , Lymphoma, Non-Hodgkin/therapy , Male , Middle Aged , Receptors, Antigen, T-Cell/metabolism , Recombinant Fusion Proteins/metabolism , T-Lymphocytes/cytology , T-Lymphocytes/immunology , T-Lymphocytes/metabolism , Transplantation, Autologous , Young Adult
2.
Microb Ecol ; 75(2): 310-317, 2018 Feb.
Article in English | MEDLINE | ID: mdl-28755027

ABSTRACT

Rice blast, caused by the ascomycete Magnaporthe oryzae, is one of the most destructive rice diseases worldwide. Even though the disease has been present in California since 1996, there is no data for the pathogen population biology in the state. Using amplified fragment length polymorphisms and mating-type markers, the M. oryzae population diversity was investigated using isolates collected when the disease was first established in California and isolates collected a decade later. While in the 1990 samples, a single multilocus genotype (MLG) was identified (MLG1), over a decade later, we found 14 additional MLGs in the 2000 isolates. Some of these MLGs were found to infect the only rice blast-resistant cultivar (M-208) available for commercial production in California. The same samples also had a significant decrease of MLG1. MLG1 was found infecting the resistant rice cultivar M-208 on one occasion whereas MLG7 was the most common genotype infecting the M-208. MLG7 was identified in the 2000 samples, and it was not present in the M. oryzae population a decade earlier. Our results demonstrate a significant increase in genotypic diversity over time with no evidence of sexual reproduction and suggest a recent introduction of new virulent race(s) of the pathogen. In addition, our data could provide information regarding the durability of the Pi-z resistance gene of the M-208. This information will be critical to plant breeders in developing strategies for deployment of other rice blast resistance genes/cultivars in the future.


Subject(s)
Magnaporthe/genetics , Magnaporthe/isolation & purification , Oryza/microbiology , Plant Diseases/microbiology , California , Genetic Variation , Genotype , Magnaporthe/classification , Magnaporthe/physiology , Oryza/growth & development , Phylogeny
3.
Mol Ther Methods Clin Dev ; 19: 285-294, 2020 Dec 11.
Article in English | MEDLINE | ID: mdl-33102620

ABSTRACT

Human immunodeficiency virus (HIV) is an attractive target for chimeric antigen receptor (CAR) therapy. CAR T cells have proved remarkably potent in targeted killing of cancer cells, and we surmised that CAR T cells could prove useful in eradicating HIV-infected cells. Toward this goal, we interrogate several neutralizing single-chain variable fragments (scFvs) that target different regions of the HIV envelope glycoprotein, gp120. We find here that CAR T cells with scFv from NIH45-46 antibody demonstrated the highest cytotoxicity. Although NIH45-46 CAR T cells are capable of eliminating antigen-expressing cells, we wanted to address HIV reactivation from ex vivo culture of HIV patient-derived CAR T cells. In order to capitalize on the HIV reactivation, we developed a conditionally replicating lentiviral vector (crLV). The crLV can hijack HIV machinery, forming a chimeric lentivirus (LV) instead of HIV and delivered to uninfected cells. We find that CAR T cells generated with crLVs have similar CAR-mediated functionality as traditional CARs. We also demonstrate crLVs' capability of expanding CAR percentage and protecting CD4 CAR T cell in HIV donors. Collectively, we demonstrate here that the novel crLV NIH45-46 CAR can serve as a strategy to combat HIV, as well as overcome HIV reactivation in CD4+ CAR T cells.

SELECTION OF CITATIONS
SEARCH DETAIL