Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 143
Filter
Add more filters

Publication year range
1.
J Cell Sci ; 137(1)2024 01 01.
Article in English | MEDLINE | ID: mdl-38059420

ABSTRACT

The Rac1-WAVE-Arp2/3 pathway pushes the plasma membrane by polymerizing branched actin, thereby powering membrane protrusions that mediate cell migration. Here, using knockdown (KD) or knockout (KO), we combine the inactivation of the Arp2/3 inhibitory protein arpin, the Arp2/3 subunit ARPC1A and the WAVE complex subunit CYFIP2, all of which enhance the polymerization of cortical branched actin. Inactivation of the three negative regulators of cortical branched actin increases migration persistence of human breast MCF10A cells and of endodermal cells in the zebrafish embryo, significantly more than any single or double inactivation. In the triple KO cells, but not in triple KD cells, the 'super-migrator' phenotype was associated with a heterogenous downregulation of vimentin (VIM) expression and a lack of coordination in collective behaviors, such as wound healing and acinus morphogenesis. Re-expression of vimentin in triple KO cells largely restored normal persistence of single cell migration, suggesting that vimentin downregulation contributes to the maintenance of the super-migrator phenotype in triple KO cells. Constant excessive production of branched actin at the cell cortex thus commits cells into a motile state through changes in gene expression.


Subject(s)
Actins , Zebrafish , Animals , Humans , Actins/metabolism , Vimentin/genetics , Vimentin/metabolism , Zebrafish/metabolism , Actin-Related Protein 2-3 Complex/genetics , Actin-Related Protein 2-3 Complex/metabolism , Cell Movement/physiology , Carrier Proteins/metabolism
2.
J Med Genet ; 61(3): 284-288, 2024 Feb 21.
Article in English | MEDLINE | ID: mdl-37748860

ABSTRACT

PURPOSE: Mosaic BRCA1 promoter methylation (BRCA1meth) increases the risk of early-onset breast cancer, triple-negative breast cancer and ovarian cancer. As mosaic BRCA1meth are believed to occur de novo, their role in family breast/ovarian cancer has not been assessed. PATIENTS: Blood-derived DNA from 20 unrelated affected cases from families with aggregation of breast/ovarian cancer, but with no germline pathogenic variants in BRCA1/2, PALB2 or RAD51C/D, were screened by methylation-sensitive high-resolution melting. CpG analysis was performed by pyrosequencing on blood and buccal swab. Two probands carried a pathogenic variant in a moderate-penetrance gene (ATM and BARD1), and 8 of 18 others (44%) carried BRCA1meth (vs none of the 20 age-matched controls). Involvement of BRCA1 in tumourigenesis in methylated probands was demonstrated in most tested cases by detection of a loss of heterozygosity and a homologous recombination deficiency signature. Among the eight methylated probands, two had relatives with breast cancer with detectable BRCA1meth in blood, including one with high methylation levels in two non-tumour tissues. CONCLUSIONS: The high prevalence of mosaic BRCA1meth in patients with breast/ovarian cancer with affected relatives, as well as this first description of a family aggregation of mosaic BRCA1meth, shows how this de novo event can contribute to hereditary breast/ovarian cancer pedigrees.


Subject(s)
Breast Neoplasms , Ovarian Neoplasms , Humans , Female , BRCA1 Protein/genetics , Pedigree , BRCA2 Protein/genetics , Breast Neoplasms/genetics , Breast Neoplasms/pathology , Methylation , Ovarian Neoplasms/genetics , Ovarian Neoplasms/diagnosis , Germ-Line Mutation/genetics , Genetic Predisposition to Disease , DNA Methylation/genetics
3.
Int J Cancer ; 154(3): 504-515, 2024 Feb 01.
Article in English | MEDLINE | ID: mdl-37908048

ABSTRACT

The management of anal squamous cell carcinoma (ASCC) has yet to experience the transformative impact of precision medicine. Conducting genomic analyses may uncover novel prognostic biomarkers and offer potential directions for the development of targeted therapies. To that end, we assessed the prognostic and theragnostic implications of pathogenic variants identified in 571 cancer-related genes from surgical samples collected from a homogeneous, multicentric French cohort of 158 ASCC patients who underwent abdominoperineal resection treatment. Alterations in PI3K/AKT/mTOR, chromatin remodeling, and Notch pathways were frequent in HPV-positive tumors, while HPV-negative tumors often harbored variants in cell cycle regulation and genome integrity maintenance genes (e.g., frequent TP53 and TERT promoter mutations). In patients with HPV-positive tumors, KMT2C and PIK3CA exon 9/20 pathogenic variants were associated with worse overall survival in multivariate analysis (Hazard ratio (HR)KMT2C = 2.54, 95%CI = [1.25,5.17], P value = .010; HRPIK3CA = 2.43, 95%CI = [1.3,4.56], P value = .006). Alterations with theragnostic value in another cancer type was detected in 43% of patients. These results suggest that PIK3CA and KMT2C pathogenic variants are independent prognostic factors in patients with ASCC with HPV-positive tumors treated by abdominoperineal resection. And, importantly, the high prevalence of alterations bearing potential theragnostic value strongly supports the use of genomic profiling to allow patient enrollment in precision medicine clinical trials.


Subject(s)
Anus Neoplasms , Carcinoma, Squamous Cell , Proctectomy , Humans , Anus Neoplasms/genetics , Anus Neoplasms/pathology , Anus Neoplasms/surgery , Carcinoma, Squamous Cell/genetics , Carcinoma, Squamous Cell/surgery , Carcinoma, Squamous Cell/pathology , Class I Phosphatidylinositol 3-Kinases/genetics , Mutation , Papillomavirus Infections/complications , Papillomavirus Infections/genetics , Phosphatidylinositol 3-Kinases/genetics , Prognosis
4.
J Cell Sci ; 135(7)2022 04 01.
Article in English | MEDLINE | ID: mdl-35394045

ABSTRACT

Altered endocytosis and vesicular trafficking are major players during tumorigenesis. Flotillin overexpression, a feature observed in many invasive tumors and identified as a marker of poor prognosis, induces a deregulated endocytic and trafficking pathway called upregulated flotillin-induced trafficking (UFIT). Here, we found that in non-tumoral mammary epithelial cells, induction of the UFIT pathway promotes epithelial-to-mesenchymal transition (EMT) and accelerates the endocytosis of several transmembrane receptors, including AXL, in flotillin-positive late endosomes. AXL overexpression, frequently observed in cancer cells, is linked to EMT and metastasis formation. In flotillin-overexpressing non-tumoral mammary epithelial cells and in invasive breast carcinoma cells, we found that the UFIT pathway-mediated AXL endocytosis allows its stabilization and depends on sphingosine kinase 2, a lipid kinase recruited in flotillin-rich plasma membrane domains and endosomes. Thus, the deregulation of vesicular trafficking following flotillin upregulation, and through sphingosine kinase 2, emerges as a new mechanism of AXL overexpression and EMT-inducing signaling pathway activation.


Subject(s)
Breast Neoplasms , Epithelial-Mesenchymal Transition , Membrane Proteins , Phosphotransferases (Alcohol Group Acceptor) , Proto-Oncogene Proteins , Receptor Protein-Tyrosine Kinases , Cell Line, Tumor , Female , Humans , Membrane Proteins/metabolism , Phosphotransferases (Alcohol Group Acceptor)/metabolism , Proto-Oncogene Proteins/metabolism , Receptor Protein-Tyrosine Kinases/metabolism , Axl Receptor Tyrosine Kinase
5.
J Med Genet ; 60(12): 1198-1205, 2023 Nov 27.
Article in English | MEDLINE | ID: mdl-37402566

ABSTRACT

BACKGROUND: The MSH3 gene is part of the DNA mismatch repair system, but has never been shown to be involved in Lynch syndrome. A first report of four patients from two families, bearing biallelic MSH3 germline variants, with a phenotype of attenuated colorectal adenomatous polyposis raised the question of its involvement in hereditary cancer predisposition. The patients' tumours exhibited elevated microsatellite alterations at selected tetranucleotide repeats (EMAST), a hallmark of MSH3 deficiency. METHODS: We report five new unrelated patients with MSH3-associated polyposis. We describe their personal and familial history and study the EMAST phenotype in various normal and tumour samples, which are relevant findings based on the rarity of this polyposis subtype so far. RESULTS: All patients had attenuated colorectal adenomatous polyposis, with duodenal polyposis in two cases. Both women had breast carcinomas. EMAST phenotype was present at various levels in different samples of the five patients, confirming the MSH3 deficiency, with a gradient of instability in polyps depending on their degree of dysplasia. The negative EMAST phenotype ruled out the diagnosis of germline MSH3 deficiency for two patients: one homozygous for a benign variant and one with a monoallelic large deletion. CONCLUSION: This report lends further credence to biallelic MSH3 germline pathogenic variants being involved in colorectal and duodenal adenomatous polyposis. Large-scale studies may help clarify the tumour spectrum and associated risks. Ascertainment of EMAST may help with the interpretation of variants of unknown significance. We recommend adding MSH3 to dedicated diagnostic gene panels.


Subject(s)
Adenomatous Polyposis Coli , Colorectal Neoplasms, Hereditary Nonpolyposis , Colorectal Neoplasms , Humans , Female , Adenomatous Polyposis Coli/genetics , Colorectal Neoplasms/genetics , Colorectal Neoplasms/pathology , Microsatellite Repeats/genetics , Colorectal Neoplasms, Hereditary Nonpolyposis/genetics , Genetic Predisposition to Disease , MutS Homolog 3 Protein/genetics , MutS Homolog 3 Protein/metabolism
6.
J Med Genet ; 61(1): 78-83, 2023 Dec 21.
Article in English | MEDLINE | ID: mdl-37541786

ABSTRACT

About half of the human genome is composed of repeated sequences derived from mobile elements, mainly retrotransposons, generally without pathogenic effect. Familial forms of retinoblastoma are caused by germline pathogenic variants in RB1 gene. Here, we describe a family with retinoblastoma affecting a father and his son. No pathogenic variant was identified after DNA analysis of RB1 gene coding sequence and exon-intron junctions. However, RB1 mRNA analysis showed a chimeric transcript with insertion of 114 nucleotides from HPF1 gene inside RB1 gene. This chimeric transcript led to an insertion of 38 amino acids in functional domain of retinoblastoma protein. Subsequent DNA analysis in RB1 intron 17 revealed the presence of a full-length HPF1 retrogene insertion in opposite orientation. Functional assay shows that this insertion has a deleterious impact on retinoblastoma protein function. This is the first report of a full-length retrogene insertion involved in human Mendelian disease leading to a chimeric transcript and a non-functional chimeric protein. Some retrogene insertions may be missed by standard diagnostic genetic testing, so contribution of retrogene insertions to human disease may be underestimated. The increasing use of whole genome sequencing in diagnostic settings will help to get a more comprehensive view of retrogenes.


Subject(s)
Retinal Neoplasms , Retinoblastoma , Humans , Retinoblastoma/genetics , Retinoblastoma/diagnosis , Retinoblastoma/pathology , Retinoblastoma Protein/genetics , Genes, Retinoblastoma , Disease Susceptibility , Retinal Neoplasms/diagnosis , Retinal Neoplasms/genetics , Retinal Neoplasms/pathology , DNA , DNA Mutational Analysis , Ubiquitin-Protein Ligases/genetics , Retinoblastoma Binding Proteins/genetics , Carrier Proteins/genetics , Nuclear Proteins/genetics
7.
Neuropathol Appl Neurobiol ; 49(4): e12929, 2023 08.
Article in English | MEDLINE | ID: mdl-37524406

ABSTRACT

AIMS: The mutY DNA glycosylase encoded by the MUTYH gene prevents G:C → T:A transversions through the base excision repair DNA repair system. Germline biallelic pathogenic variants in MUTYH cause an adenomatous polyposis called MUTYH-associated polyposis (MAP), an autosomal recessive disease (OMIM: 608456), with an increased risk of colorectal cancer. Digestive lesions in this context show an excess of G:C → T:A transversions, individualising a specific mutational signature associated with MUTYH deficiency called signature SBS36. Predisposition to other tumours in patients with germline biallelic pathogenic variants in MUTYH is suspected but remains unclear. We report the first case of medulloblastoma in a patient with MAP, carrying the homozygous pathogenic variant c.1227_1228dup, p.(Glu410Glyfs*43) in MUTYH. METHODS: Whole exome sequencing was performed on the medulloblastoma to enlighten single nucleotide variants of interest, microsatellite status and mutational signature. The objective was to determine the involvement of MUTYH deficiency in the oncogenesis of this medulloblastoma. RESULTS: The medulloblastoma has the mutational signature SBS36 and driver pathogenic variants in CTNNB1, PTCH1 and KDM6A corresponding to G:C → T:A transversions, suggesting a role of MUTYH deficiency in oncogenesis. CONCLUSIONS: Therefore, medulloblastoma could be a rare manifestation associated with germline biallelic pathogenic variants in MUTYH.


Subject(s)
Adenomatous Polyposis Coli , Cerebellar Neoplasms , Colorectal Neoplasms , Medulloblastoma , Humans , Medulloblastoma/genetics , Genetic Predisposition to Disease , Adenomatous Polyposis Coli/genetics , Adenomatous Polyposis Coli/pathology , Mutation , Cerebellar Neoplasms/genetics , Carcinogenesis , Colorectal Neoplasms/genetics
8.
Histopathology ; 83(6): 925-935, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37706251

ABSTRACT

AIMS: Malignant tumours of the lacrimal apparatus are rare and frequently show a poor prognosis, with no clear therapeutic standards. Characterisation of the genetic landscape of these rare tumours is sparse, and therefore therapeutics generally follow those of their common salivary gland counterparts. To further clarify the pathophysiology and discover potential therapeutic targets, we investigated the genetic landscape of eight tumours of the lacrimal apparatus. METHODS AND RESULTS: DNA and RNA sequencing were performed to identify genetic mutations and gene fusions. Immunohistochemistry, fluorescence in-situ hybridisation and reverse transcription-polymerase chain reaction followed by Sanger sequencing were performed to confirm the identified molecular alterations. Genetic alterations were detected in six tumours. Among five adenoid cystic carcinomas (ACC), four had confirmed alterations of MYB or MYBL1 genes, including a MYB::NFIB fusion, a MYBL1::NFIB fusion, a MYB amplification and a novel NFIB::THSD7B fusion. Mutations in genes encoding epigenetic modifiers, as well as NOTCH1, FGFR2 and ATM mutations, were also identified in ACCs. A carcinoma ex pleomorphic adenoma showed TP53 and CIC mutations and an amplification of ERBB2. A transitional cell carcinoma was associated with HPV16 infection. No genetic alteration was found for one adenocarcinoma, not otherwise specified. CONCLUSIONS: Our study highlights the variety of molecular alterations associated with lacrimal system tumours and emphasises the importance of molecular testing in these tumours, which can reveal potentially targetable mutations. Our results also reinforce the hypothesis of a common physiopathology of all ACCs, regardless of their primary location.


Subject(s)
Adenoma, Pleomorphic , Carcinoma, Adenoid Cystic , Lacrimal Apparatus , Salivary Gland Neoplasms , Humans , Lacrimal Apparatus/pathology , Oncogene Proteins, Fusion/genetics , Carcinoma, Adenoid Cystic/genetics , Carcinoma, Adenoid Cystic/pathology , Adenoma, Pleomorphic/genetics , Adenoma, Pleomorphic/pathology , Gene Fusion , Salivary Gland Neoplasms/genetics , Salivary Gland Neoplasms/pathology
9.
J Pathol ; 258(4): 408-425, 2022 12.
Article in English | MEDLINE | ID: mdl-36102377

ABSTRACT

Cancer-associated fibroblasts (CAFs) are orchestrators of the pancreatic ductal adenocarcinoma (PDAC) microenvironment. Previously we described four CAF subtypes with specific molecular and functional features. Here, we have refined our CAF subtype signatures using RNAseq and immunostaining with the goal of defining bioinformatically the phenotypic stromal and tumor epithelial states associated with CAF diversity. We used primary CAF cultures grown from patient PDAC tumors, human data sets (in-house and public, including single-cell analyses), genetically engineered mouse PDAC tissues, and patient-derived xenografts (PDX) grown in mice. We found that CAF subtype RNAseq signatures correlated with immunostaining. Tumors rich in periostin-positive CAFs were significantly associated with shorter overall survival of patients. Periostin-positive CAFs were characterized by high proliferation and protein synthesis rates and low α-smooth muscle actin expression and were found in peri-/pre-tumoral areas. They were associated with highly cellular tumors and with macrophage infiltrates. Podoplanin-positive CAFs were associated with immune-related signatures and recruitment of dendritic cells. Importantly, we showed that the combination of periostin-positive CAFs and podoplanin-positive CAFs was associated with specific tumor microenvironment features in terms of stromal abundance and immune cell infiltrates. Podoplanin-positive CAFs identified an inflammatory CAF (iCAF)-like subset, whereas periostin-positive CAFs were not correlated with the published myofibroblastic CAF (myCAF)/iCAF classification. Taken together, these results suggest that a periostin-positive CAF is an early, activated CAF, associated with aggressive tumors, whereas a podoplanin-positive CAF is associated with an immune-related phenotype. These two subpopulations cooperate to define specific tumor microenvironment and patient prognosis and are of putative interest for future therapeutic stratification of patients. © 2022 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland.


Subject(s)
Adenocarcinoma , Cancer-Associated Fibroblasts , Carcinoma, Pancreatic Ductal , Pancreatic Neoplasms , Humans , Mice , Animals , Cancer-Associated Fibroblasts/pathology , Pancreatic Neoplasms/pathology , Tumor Microenvironment , Adenocarcinoma/metabolism , Carcinoma, Pancreatic Ductal/genetics , Pancreatic Neoplasms
10.
EMBO J ; 37(13)2018 07 02.
Article in English | MEDLINE | ID: mdl-29844016

ABSTRACT

The Arp2/3 complex generates branched actin networks that exert pushing forces onto different cellular membranes. WASH complexes activate Arp2/3 complexes at the surface of endosomes and thereby fission transport intermediates containing endocytosed receptors, such as α5ß1 integrins. How WASH complexes are assembled in the cell is unknown. Here, we identify the small coiled-coil protein HSBP1 as a factor that specifically promotes the assembly of a ternary complex composed of CCDC53, WASH, and FAM21 by dissociating the CCDC53 homotrimeric precursor. HSBP1 operates at the centrosome, which concentrates the building blocks. HSBP1 depletion in human cancer cell lines and in Dictyostelium amoebae phenocopies WASH depletion, suggesting a critical role of the ternary WASH complex for WASH functions. HSBP1 is required for the development of focal adhesions and of cell polarity. These defects impair the migration and invasion of tumor cells. Overexpression of HSBP1 in breast tumors is associated with increased levels of WASH complexes and with poor prognosis for patients.


Subject(s)
Centrosome/metabolism , Heat-Shock Proteins/metabolism , Microfilament Proteins/metabolism , Breast Neoplasms/metabolism , Breast Neoplasms/pathology , Cell Line, Tumor , Heat-Shock Proteins/chemistry , Heat-Shock Proteins/genetics , Humans , Models, Molecular , Prognosis
11.
Nucleic Acids Res ; 48(5): 2676-2693, 2020 03 18.
Article in English | MEDLINE | ID: mdl-31943118

ABSTRACT

Besides analyses of specific alternative splicing (AS) variants, little is known about AS regulatory pathways and programs involved in anticancer drug resistance. Doxorubicin is widely used in breast cancer chemotherapy. Here, we identified 1723 AS events and 41 splicing factors regulated in a breast cancer cell model of acquired resistance to doxorubicin. An RNAi screen on splicing factors identified the little studied ZRANB2 and SYF2, whose depletion partially reversed doxorubicin resistance. By RNAi and RNA-seq in resistant cells, we found that the AS programs controlled by ZRANB2 and SYF2 were enriched in resistance-associated AS events, and converged on the ECT2 splice variant including exon 5 (ECT2-Ex5+). Both ZRANB2 and SYF2 were found associated with ECT2 pre-messenger RNA, and ECT2-Ex5+ isoform depletion reduced doxorubicin resistance. Following doxorubicin treatment, resistant cells accumulated in S phase, which partially depended on ZRANB2, SYF2 and the ECT2-Ex5+ isoform. Finally, doxorubicin combination with an oligonucleotide inhibiting ECT2-Ex5 inclusion reduced doxorubicin-resistant tumor growth in mouse xenografts, and high ECT2-Ex5 inclusion levels were associated with bad prognosis in breast cancer treated with chemotherapy. Altogether, our data identify AS programs controlled by ZRANB2 and SYF2 and converging on ECT2, that participate to breast cancer cell resistance to doxorubicin.


Subject(s)
Alternative Splicing/genetics , Breast Neoplasms/drug therapy , Doxorubicin/therapeutic use , Drug Resistance, Neoplasm , Proto-Oncogene Proteins/metabolism , RNA-Binding Proteins/metabolism , Adult , Aged , Aged, 80 and over , Alternative Splicing/drug effects , Animals , Breast Neoplasms/genetics , Breast Neoplasms/pathology , Cell Line, Tumor , Cell Proliferation/drug effects , Doxorubicin/pharmacology , Drug Resistance, Neoplasm/drug effects , Drug Resistance, Neoplasm/genetics , Epithelial-Mesenchymal Transition/drug effects , Epithelial-Mesenchymal Transition/genetics , Exons/genetics , Female , Gene Expression Regulation, Neoplastic/drug effects , Humans , MCF-7 Cells , Mice, Nude , MicroRNAs/genetics , MicroRNAs/metabolism , Middle Aged , Protein Isoforms/metabolism , RNA Splice Sites/genetics , S Phase/drug effects , Spliceosomes/metabolism
12.
BMC Biol ; 19(1): 228, 2021 10 21.
Article in English | MEDLINE | ID: mdl-34674701

ABSTRACT

BACKGROUND: Mitochondrial nucleoside diphosphate kinase (NDPK-D, NME4, NM23-H4) is a multifunctional enzyme mainly localized in the intermembrane space, bound to the inner membrane. RESULTS: We constructed loss-of-function mutants of NDPK-D, lacking either NDP kinase activity or membrane interaction and expressed mutants or wild-type protein in cancer cells. In a complementary approach, we performed depletion of NDPK-D by RNA interference. Both loss-of-function mutations and NDPK-D depletion promoted epithelial-mesenchymal transition and increased migratory and invasive potential. Immunocompromised mice developed more metastases when injected with cells expressing mutant NDPK-D as compared to wild-type. This metastatic reprogramming is a consequence of mitochondrial alterations, including fragmentation and loss of mitochondria, a metabolic switch from respiration to glycolysis, increased ROS generation, and further metabolic changes in mitochondria, all of which can trigger pro-metastatic protein expression and signaling cascades. In human cancer, NME4 expression is negatively associated with markers of epithelial-mesenchymal transition and tumor aggressiveness and a good prognosis factor for beneficial clinical outcome. CONCLUSIONS: These data demonstrate NME4 as a novel metastasis suppressor gene, the first localizing to mitochondria, pointing to a role of mitochondria in metastatic dissemination.


Subject(s)
Neoplasms , Nucleoside-Diphosphate Kinase , Animals , Intracellular Membranes , Mice , Mitochondria , NM23 Nucleoside Diphosphate Kinases/genetics , NM23 Nucleoside Diphosphate Kinases/metabolism , Neoplasms/genetics , Neoplasms/metabolism , Nucleoside Diphosphate Kinase D/metabolism , Nucleoside-Diphosphate Kinase/genetics , Nucleoside-Diphosphate Kinase/metabolism
13.
Breast Cancer Res ; 23(1): 57, 2021 05 21.
Article in English | MEDLINE | ID: mdl-34020697

ABSTRACT

BACKGROUND: Endocrine therapies targeting estrogen signaling have significantly improved breast cancer (BC) patient survival, although 40% of ERα-positive BCs do not respond to those therapies. Aside from genomic signaling, estrogen triggers non-genomic pathways by forming a complex containing methylERα/Src/PI3K, a hallmark of aggressiveness and resistance to tamoxifen. We aimed to confirm the prognostic value of this complex and investigated whether its targeting could improve tumor response in vivo. METHODS: The interaction of ERα/Src and ERα/PI3K was studied by proximity ligation assay (PLA) in a cohort of 440 BC patients. We then treated patient-derived BC xenografts (PDXs) with fulvestrant or the PI3K inhibitor alpelisib (BYL719) alone or in combination. We analyzed their anti-proliferative effects on 6 ERα+ and 3 ERα- PDX models. Genomic and non-genomic estrogen signaling were assessed by measuring ERα/PI3K interaction by PLA and the expression of estrogen target genes by RT-QPCR, respectively. RESULTS: We confirmed that ERα/Src and ERα/PI3K interactions were associated with a trend to poorer survival, the latter displaying the most significant effects. In ERα+ tumors, the combination of BYL719 and fulvestrant was more effective than fulvestrant alone in 3 models, irrespective of PI3K, PTEN status, or ERα/PI3K targeting. Remarkably, resistance to fulvestrant was associated with non-genomic ERα signaling, since genomic degradation of ERα was unaltered in these tumors, whereas the treatment did not diminish the level of ERα/PI3K interaction. Interestingly, in 2 ERα- models, fulvestrant alone impacted tumor growth, and this was associated with a decrease in ERα/PI3K interaction. CONCLUSIONS: Our results demonstrate that ERα/PI3K may constitute a new prognostic marker, as well as a new target in BC. Indeed, resistance to fulvestrant in ERα+ tumors was associated with a lack of impairment of ERα/PI3K interaction in the cytoplasm. In addition, an efficient targeting of ERα/PI3K in ERα- tumors could constitute a promising therapeutic option.


Subject(s)
Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Breast Neoplasms/drug therapy , Fulvestrant/therapeutic use , Phosphoinositide-3 Kinase Inhibitors/therapeutic use , Receptors, Estrogen/metabolism , Thiazoles/therapeutic use , Animals , Biomarkers, Tumor/metabolism , Breast Neoplasms/genetics , Breast Neoplasms/metabolism , Breast Neoplasms/pathology , Drug Resistance, Neoplasm/drug effects , Female , Genomics , Humans , Mice , Middle Aged , Phosphatidylinositol 3-Kinases/genetics , Phosphatidylinositol 3-Kinases/metabolism , Prognosis , Proto-Oncogene Proteins pp60(c-src)/metabolism , Receptors, Estrogen/antagonists & inhibitors , Signal Transduction/drug effects , Xenograft Model Antitumor Assays
14.
Br J Cancer ; 124(4): 777-785, 2021 02.
Article in English | MEDLINE | ID: mdl-33191407

ABSTRACT

BACKGROUND: Cervical cancer (CC) remains a leading cause of gynaecological cancer-related mortality with infection by human papilloma virus (HPV) being the most important risk factor. We analysed the association between different viral integration signatures, clinical parameters and outcome in pre-treated CCs. METHODS: Different integration signatures were identified using HPV double capture followed by next-generation sequencing (NGS) in 272 CC patients from the BioRAIDs study [NCT02428842]. Correlations between HPV integration signatures and clinical, biological and molecular features were assessed. RESULTS: Episomal HPV was much less frequent in CC as compared to anal carcinoma (p < 0.0001). We identified >300 different HPV-chromosomal junctions (inter- or intra-genic). The most frequent integration site in CC was in MACROD2 gene followed by MIPOL1/TTC6 and TP63. HPV integration signatures were not associated with histological subtype, FIGO staging, treatment or PFS. HPVs were more frequently episomal in PIK3CA mutated tumours (p = 0.023). Viral integration type was dependent on HPV genotype (p < 0.0001); HPV18 and HPV45 being always integrated. High HPV copy number was associated with longer PFS (p = 0.011). CONCLUSIONS: This is to our knowledge the first study assessing the prognostic value of HPV integration in a prospectively annotated CC cohort, which detects a hotspot of HPV integration at MACROD2; involved in impaired PARP1 activity and chromosome instability.


Subject(s)
DNA Repair Enzymes/genetics , Hydrolases/genetics , Papillomaviridae/physiology , Papillomavirus Infections/virology , Uterine Cervical Neoplasms/virology , Virus Integration/genetics , Carcinoma, Squamous Cell/genetics , Carcinoma, Squamous Cell/virology , Class I Phosphatidylinositol 3-Kinases/genetics , Female , Humans , Kallikreins/genetics , Middle Aged , Papillomaviridae/genetics , Papillomavirus Infections/genetics , Progression-Free Survival , Prostate-Specific Antigen/genetics , Uterine Cervical Neoplasms/genetics
15.
J Cell Sci ; 132(21)2019 11 08.
Article in English | MEDLINE | ID: mdl-31604795

ABSTRACT

Directional collective cell migration (DCCM) is crucial for morphogenesis and cancer metastasis. P-cadherin (also known as CDH3), which is a cell-cell adhesion protein expressed in carcinoma and aggressive sarcoma cells and associated with poor prognosis, is a major DCCM regulator. However, it is unclear how P-cadherin-mediated mechanical coupling between migrating cells influences force transmission to the extracellular matrix (ECM). Here, we found that decorin, a small proteoglycan that binds to and organizes collagen fibers, is specifically expressed and secreted upon P-cadherin, but not E- and R-cadherin (also known as CDH1 and CDH4, respectively) expression. Through cell biological and biophysical approaches, we demonstrated that decorin is required for P-cadherin-mediated DCCM and collagen fiber orientation in the migration direction in 2D and 3D matrices. Moreover, P-cadherin, through decorin-mediated collagen fiber reorientation, promotes the activation of ß1 integrin and of the ß-Pix (ARHGEF7)/CDC42 axis, which increases traction forces, allowing DCCM. Our results identify a novel P-cadherin-mediated mechanism to promote DCCM through ECM remodeling and ECM-guided cell migration.


Subject(s)
Cadherins/metabolism , Cell Movement/physiology , Collagen/metabolism , Decorin/metabolism , Cell Adhesion/physiology , Extracellular Matrix/metabolism , Humans , Mechanical Phenomena , cdc42 GTP-Binding Protein/metabolism
16.
J Cell Sci ; 131(17)2018 09 05.
Article in English | MEDLINE | ID: mdl-30111578

ABSTRACT

Tumor cell invasion and metastasis formation are the major cause of death in cancer patients. These processes rely on extracellular matrix (ECM) degradation mediated by organelles termed invadopodia, to which the transmembrane matrix metalloproteinase MT1-MMP (also known as MMP14) is delivered from its reservoir, the RAB7-containing endolysosomes. How MT1-MMP is targeted to endolysosomes remains to be elucidated. Flotillin-1 and -2 are upregulated in many invasive cancers. Here, we show that flotillin upregulation triggers a general mechanism, common to carcinoma and sarcoma, which promotes RAB5-dependent MT1-MMP endocytosis and its delivery to RAB7-positive endolysosomal reservoirs. Conversely, flotillin knockdown in invasive cancer cells greatly reduces MT1-MMP accumulation in endolysosomes, its subsequent exocytosis at invadopodia, ECM degradation and cell invasion. Our results demonstrate that flotillin upregulation is necessary and sufficient to promote epithelial and mesenchymal cancer cell invasion and ECM degradation by controlling MT1-MMP endocytosis and delivery to the endolysosomal recycling compartment.


Subject(s)
Endosomes/metabolism , Lysosomes/metabolism , Matrix Metalloproteinase 14/metabolism , Membrane Proteins/metabolism , Neoplasms/metabolism , Cell Line, Tumor , Endocytosis , Endosomes/genetics , Extracellular Matrix/genetics , Extracellular Matrix/metabolism , Humans , Lysosomes/genetics , Matrix Metalloproteinase 14/genetics , Membrane Proteins/genetics , Neoplasm Invasiveness , Neoplasms/genetics , Neoplasms/pathology , Podosomes/genetics , Podosomes/metabolism , Protein Transport , Up-Regulation , rab GTP-Binding Proteins/genetics , rab GTP-Binding Proteins/metabolism , rab5 GTP-Binding Proteins/genetics , rab5 GTP-Binding Proteins/metabolism , rab7 GTP-Binding Proteins
17.
Int J Cancer ; 145(7): 1852-1859, 2019 10 01.
Article in English | MEDLINE | ID: mdl-30714617

ABSTRACT

Anal squamous cell carcinoma (ASCC) is a rare tumour, but its incidence is increasing. Standard chemoradiotherapy fails to cure 20% of patients and no targeted therapy is currently approved for recurrent ASCC. The PI3K/Akt/mTOR pathway is frequently altered in this poorly characterised carcinoma. IGF2 was identified here as a key factor in ASCC oncogenesis, as IGF2 was shown to play a crucial role in the PI3K pathway with frequent (~60%) and mutually exclusive genomic alterations in IGF2, IGF1R, PTEN and PIK3CA genes. We also demonstrated that IGF2 expression is mainly due to cancer-associated fibroblasts and that IGF2 secreted by cancer-associated fibroblasts from ASCC samples promotes proliferation of a human ASCC cell line via IGF2 paracrine signalling. Altogether, these results highlight the key role of the IGF2/PI3K axis, and the major role of cancer-associated fibroblasts in tumour growth via IGF2 secretion, suggesting a major role of IGF2/IGF1R inhibitors in ASCC therapies.


Subject(s)
Anus Neoplasms/metabolism , Cancer-Associated Fibroblasts/metabolism , Carcinoma, Squamous Cell/metabolism , Insulin-Like Growth Factor II/genetics , Insulin-Like Growth Factor II/metabolism , Animals , Anus Neoplasms/genetics , Carcinoma, Squamous Cell/genetics , Cell Line, Tumor , Female , Gene Expression Regulation, Neoplastic , Humans , Male , Mice , Mutation , Neoplasm Transplantation , Paracrine Communication , Phosphatidylinositol 3-Kinases/metabolism , Signal Transduction
18.
Int J Cancer ; 145(7): 1902-1912, 2019 10 01.
Article in English | MEDLINE | ID: mdl-30859564

ABSTRACT

Triple-negative breast cancer (TNBC) represents 10% of all breast cancers and is a very heterogeneous disease. Globally, women with TNBC have a poor prognosis, and the development of effective targeted therapies remains a real challenge. Patient-derived xenografts (PDX) are clinically relevant models that have emerged as important tools for the analysis of drug activity and predictive biomarker discovery. The purpose of this work was to analyze the molecular heterogeneity of a large panel of TNBC PDX (n = 61) in order to test targeted therapies and identify biomarkers of response. At the gene expression level, TNBC PDX represent all of the various TNBC subtypes identified by the Lehmann classification except for immunomodulatory subtype, which is underrepresented in PDX. NGS and copy number data showed a similar diversity of significantly mutated gene and somatic copy number alteration in PDX and the Cancer Genome Atlas TNBC patients. The genes most commonly altered were TP53 and oncogenes and tumor suppressors of the PI3K/AKT/mTOR and MAPK pathways. PDX showed similar morphology and immunohistochemistry markers to those of the original tumors. Efficacy experiments with PI3K and MAPK inhibitor monotherapy or combination therapy showed an antitumor activity in PDX carrying genomic mutations of PIK3CA and NRAS genes. TNBC PDX reproduce the molecular heterogeneity of TNBC patients. This large collection of PDX is a clinically relevant platform for drug testing, biomarker discovery and translational research.


Subject(s)
Gene Dosage , Gene Expression Profiling/methods , Gene Regulatory Networks , High-Throughput Nucleotide Sequencing/methods , Triple Negative Breast Neoplasms/genetics , Animals , Class I Phosphatidylinositol 3-Kinases/genetics , Female , GTP Phosphohydrolases/genetics , Gene Expression Regulation, Neoplastic , Genetic Heterogeneity , Humans , Membrane Proteins/genetics , Mice , Middle Aged , Molecular Targeted Therapy , Neoplasm Transplantation , Precision Medicine , Signal Transduction , Triple Negative Breast Neoplasms/drug therapy , Triple Negative Breast Neoplasms/pathology , Tumor Suppressor Protein p53/genetics
19.
J Cell Sci ; 130(5): 938-949, 2017 03 01.
Article in English | MEDLINE | ID: mdl-28104815

ABSTRACT

Tubulin is subject to a wide variety of posttranslational modifications, which, as part of the tubulin code, are involved in the regulation of microtubule functions. Glycylation has so far predominantly been found in motile cilia and flagella, and absence of this modification leads to ciliary disassembly. Here, we demonstrate that the correct functioning of connecting cilia of photoreceptors, which are non-motile sensory cilia, is also dependent on glycylation. In contrast to many other tissues, only one glycylase, TTLL3, is expressed in retina. Ttll3-/- mice lack glycylation in photoreceptors, which results in shortening of connecting cilia and slow retinal degeneration. Moreover, absence of glycylation results in increased levels of tubulin glutamylation in photoreceptors, and inversely, the hyperglutamylation observed in the Purkinje cell degeneration (pcd) mouse abolishes glycylation. This suggests that both posttranslational modifications compete for modification sites, and that unbalancing the glutamylation-glycylation equilibrium on axonemes of connecting cilia, regardless of the enzymatic mechanism, invariably leads to retinal degeneration.


Subject(s)
Glutamic Acid/metabolism , Photoreceptor Cells, Vertebrate/metabolism , Photoreceptor Cells, Vertebrate/pathology , Retinal Degeneration/metabolism , Retinal Degeneration/pathology , Tubulin/metabolism , Animals , Apoptosis , Cilia/metabolism , Glycosylation , Mice, Inbred C57BL , Neuroglia/metabolism , Neuroglia/pathology , Peptide Synthases/metabolism , Phenotype , Purkinje Cells/metabolism , Purkinje Cells/pathology , Retina/metabolism , Retina/pathology , Rhodopsin/metabolism , Time Factors
20.
Am J Pathol ; 188(10): 2378-2391, 2018 10.
Article in English | MEDLINE | ID: mdl-30075151

ABSTRACT

Medullary breast carcinoma (MBC) is a rare subtype of triple-negative breast cancer with specific genomic features within the spectrum of basal-like carcinoma (BLC). In this study of 19 MBCs and 36 non-MBC BLCs, we refined the transcriptomic and genomic knowledge about this entity. Unsupervised and supervised analysis of transcriptomic profiles confirmed that MBC clearly differs from non-MBC BLC, with 92 genes overexpressed and 154 genes underexpressed in MBC compared with non-MBC BLC. Immunity-related pathways are the most differentially represented pathways in MBC compared with non-MBC BLC. The proapoptotic gene BCLG (official name BCL2L14) is by far the most intensely overexpressed gene in MBC. A quantitative RT-PCR validation study conducted in 526 breast tumors corresponding to all molecular subtypes documented the specificity of BCLG overexpression in MBC, which was confirmed at the protein level by immunohistochemistry. We also found that most MBCs belong to the immunomodulatory triple-negative breast cancer subtype. Using pan-genomic analysis, it was found that MBC harbors more losses of heterozygosity than non-MBC BLC. These observations corroborate the notion that MBC remains a distinct entity that could benefit from specific treatment strategies (such as deescalation or targeted therapy) adapted to this rare tumor type.


Subject(s)
Carcinoma, Medullary/genetics , Proto-Oncogene Proteins c-bcl-2/genetics , Triple Negative Breast Neoplasms/genetics , BRCA2 Protein/genetics , DNA, Neoplasm/metabolism , Female , Gene Expression Profiling , Genes, Neoplasm/genetics , Humans , Loss of Heterozygosity/genetics , RNA, Neoplasm/metabolism , Retrospective Studies , Reverse Transcriptase Polymerase Chain Reaction , Ubiquitin-Protein Ligases/genetics
SELECTION OF CITATIONS
SEARCH DETAIL