Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
Int J Mol Sci ; 24(18)2023 Sep 07.
Article in English | MEDLINE | ID: mdl-37762107

ABSTRACT

Genomic selection (GS) plays a pivotal role in hybrid prediction. It can enhance the selection of parental lines, accurately predict hybrid performance, and harness hybrid vigor. Likewise, it can optimize breeding strategies by reducing field trial requirements, expediting hybrid development, facilitating targeted trait improvement, and enhancing adaptability to diverse environments. Leveraging genomic information empowers breeders to make informed decisions and significantly improve the efficiency and success rate of hybrid breeding programs. In order to improve the genomic ability performance, we explored the incorporation of parental phenotypic information as covariates under a multi-trait framework. Approach 1, referred to as Pmean, directly utilized parental phenotypic information without any preprocessing. While approach 2, denoted as BV, replaced the direct use of phenotypic values of both parents with their respective breeding values. While an improvement in prediction performance was observed in both approaches, with a minimum 4.24% reduction in the normalized root mean square error (NRMSE), the direct incorporation of parental phenotypic information in the Pmean approach slightly outperformed the BV approach. We also compared these two approaches using linear and nonlinear kernels, but no relevant gain was observed. Finally, our results increase empirical evidence confirming that the integration of parental phenotypic information helps increase the prediction performance of hybrids.


Subject(s)
Hybridization, Genetic , Models, Genetic , Genome, Plant , Phenotype , Genomics/methods , Plant Breeding
2.
Front Genet ; 13: 966775, 2022.
Article in English | MEDLINE | ID: mdl-36134027

ABSTRACT

The genomic selection (GS) methodology proposed over 20 years ago by Meuwissen et al. (Genetics, 2001) has revolutionized plant breeding. A predictive methodology that trains statistical machine learning algorithms with phenotypic and genotypic data of a reference population and makes predictions for genotyped candidate lines, GS saves significant resources in the selection of candidate individuals. However, its practical implementation is still challenging when the plant breeder is interested in the prediction of future seasons or new locations and/or environments, which is called the "leave one environment out" issue. Furthermore, because the distributions of the training and testing set do not match, most statistical machine learning methods struggle to produce moderate or reasonable prediction accuracies. For this reason, the main objective of this study was to explore the use of the multi-trait partial least square (MT-PLS) regression methodology for this specific task, benchmarking its performance with the Bayesian Multi-trait Genomic Best Linear Unbiased Predictor (MT-GBLUP) method. The benchmarking process was performed with five actual data sets. We found that in all data sets the MT-PLS method outperformed the popular MT-GBLUP method by 349.8% (under predictor E + G), 484.4% (under predictor E + G + GE; where E denotes environments, G genotypes and GE the genotype by environment interaction) and 15.9% (under predictor G + GE) across traits. Our results provide empirical evidence of the power of the MT-PLS methodology for the prediction of future seasons or new environments. Furthermore, the comparison between single univariate-trait (UT) versus MT for GBLUP and PLS gave an increase in prediction accuracy of MT-GBLUP versus UT-GBLUP, but not for MT-PLS versus UT-PLS.

SELECTION OF CITATIONS
SEARCH DETAIL